Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цинковые покрытия характеристика

    Такое влияние железа на коррозионное поведение цинкового покрытия связано с изменением электрохимических характеристик сплава в зависимости от его структуры. [c.55]

    Предприятие Характеристика промышленной атмосферы Алюминие- Цинковое покрытие  [c.60]

    Металлические покрытия должны быть непроницаемыми для коррозионных агентов. Однако, если в металлическом покрытии есть дефекты в виде пор, царапин, вмятин, то характер коррозионного разрушения основного металла определяется электрохимическими характеристиками обоих металлов. По отношению к стали цинковое покрытие является анодным, а медное покрытие - катодным. Поэтому первоначально начинает разрушаться цинк. При этом он защищает от разрушения железо или сталь тем дольше, чем боль- [c.267]


    Характеристика качества цинкового покрытия [c.154]

    Защитная способность покрытий зависит от физических и электрохимических параметров. Один из методов повышения защитной способности покрытий — их легирование различными элементами и обработка составами, способствующими улучшению их физических параметров и электрохимических характеристик. В результате исследований [49] показана перспективность использования металлических покрытий в агрессивных средах нефтегазовой промышленности, в том числе в сероводородсодержащих. В сероводородсодержащих средах цинковые покрытия независимо от способа получения как при наличии ионов хлора, так и без них являются анодными по отношению к стали. В последние годы появилось значительное количество публикаций, в которых рассматривается вопрос увеличения защитной способности цинковых покрытий легированием их металлами переходной восьмой группы таблицы Д. И. Менделеева. Значительного повышения защитных свойств достигают введением в цинковое покрытие никеля. При содержании в цинковом покрытии от 10 до 15 % Ni коррозионная стойкость стали с покрытием повышается в 3-5 раз. [c.47]

    Важным фактором, влияющим на скорость коррозии и электрохимические характеристики металлов, является температура. Повышение температуры раствора увеличивает скорость коррозии металлов. Интересно, что на разные металлы повышение температуры влияет по разному. Так, если при нормальной комнатной температуре железо является катодом по отношению к цинку, то при температуре более 75° С происходит изменение полярности в паре и цинк становится катодом по отношению к железу. Этим обстоятельством объясняется неудачное применение цинкового покрытия для защиты стальных радиаторов водяного отопления в связи с пористостью катодного цинкового покрытия наступает сквозное проржавление стенки радиатора, являющегося анодом в гальванопаре железо — цинк при повышенных температурах. [c.44]

    Металлические покрытия в отличие от органических непроницаемы для коррозионных агентов (воды, газов), поэтому вопрос об образовании продуктов коррозии под непрерывным, защитным металлическим слоем, казалось бы, снимается. Однако и в них могут быть дефекты в виде пор, царапин, вмятин и т. д. При наличии шор характер коррозионного разрушения основного металла определяется электрохимическими характеристиками обоих металлов, поэтому различают анодные и катодные металлические покрытия ( см. рис. 2-3). Например, по отношению к стали цинковое покрытие является анодным, тогда как медное — катодным. [c.68]


    Одним из основных критериев, определяющих область применения и эксплуатационные характеристики металлизационных покрытий, является их адгезионная прочность с основным металлом, которая зависит от вида материала (напыляемого и защищаемого), подготовки поверхности, технологии напыления и т. д. Так, например, адгезионная прочность цинковых покрытий, нанесенных на сталь, при толщине 200—300 мкм составляет 4 МПа. Адгезионная прочность покрытий из алюминия, нанесенного электродуговым способом, достигает 10 МПа, а при газопламенном напылении — 5 МПа. [c.173]

    В результате проведенного исследования установлено, что анионные поверхностно-активные вещества — смачиватель НБ и диспергатор НФ — улучшают структуру и технологические характеристики цинковых покрытий. Установлен оптимальный состав электролита и условия электролиза, параметры их приведены в таблице. Из рассмотренных в таблице электролитов в указанных пределах плотностей тока и температур получаются блестящие цинковые покрытия на стальных и других подложках. [c.15]

    Определенный интерес представляет система вольфрам— шнк. Тем более, что цинк является низкоплавким металлом и не образует твердого раствора с вольфрамом. Поскольку цинк легко может быть отогнан, весьма заманчива идея получения вольфрама из цинк-вольфрамового сплава. Введение вольфрама в цинковое гальваническое покрытие может способствовать улучшению эксплуатационных характеристик очень распространенных цинковых покрытий. [c.101]

    Если в конструкции цистерн предусмотрены ребра жесткости, то последние после изготовления и ручной оцинковки устанавливают в цистерне до приварки второго днища. Места приварки ребер жесткости подлежат соответствующей обработке и нанесению (вручную) на них цинкового покрытия. Техническая характеристика установки для механизированного цинкования обечаек резервуаров приведена ниже  [c.115]

    Гальванические покрытия представляют из себя еще один способ защиты малоуглеродистых сталей. Никелевые покрытия обычно довольно эффективны для предотвращения коррозии в статических условиях, но, как известно, понижают усталостную прочность сталей из-за образования в никелевом покрытии растягивающих напряжений. На коррозионную усталость никелевые покрытия оказывают небольшое илн вообще не оказывают никакого влияния. Цинковые покрытия способствуют образованию напряжений сжатия, которые сами по себе приводят к повышению обычного предела усталости. С точки зрения коррозионной усталости характеристики материала, покрытого цинком, заметно лучше вследствие дополнительной протекторной защиты, осуществляемой цинком. Ниже представлены предел усталости на воздухе Оу и предел коррозионной усталости Ок (МН/м ), полученные для стальной проволоки с 0,63 /о С в морской воде при нулевом среднем напряжении цикла. Толщина покрытия составляла 12 мкм [28]  [c.294]

    Характеристики цинковых покрытий [c.412]

    Практически наиболее толстые цинковые покрытия могут быть получены путем погружения в горячий расплав (горячее цинкование) или распылением, в то время как диффузионное цинкование обычно дает более тонкие покрытия. Сравнительные основные характеристики каждого метода покрытия представлены в табл. 7.1. [c.412]

    Характеристики цинковых покрытий, полученных разными методами [c.414]

    Общая характеристика хроматных пленок и условия их получения на цинковых покрытиях [c.6]

    При получении покрытия из расплава в ванну с расплавленным алюминием обычно добавляют кремний, чтобы затруднить образование слоя хрупкого сплава. Полученные из расплава покрытия используют для повышения устойчивости к окислению при умеренных температурах таких изделий, как отопительные устройства и выхлопные трубы автомобилей. Они стойки к действию температуры до 480 °С. При еще более высоких температурах покрытия становятся огнеупорными, но сохраняют защитные свойства вплоть до 680 °С [21]. Использование алюминиевых покрытий для защиты от атмосферной коррозии ограничено вследствие более высокой стоимости по сравнению с цинковыми, а также из-за непостоянства эксплуатационных характеристик. В мягкой воде потенциал алюминия положителен по отношению к стали, поэтому покрытие является коррозионностойким, В морской и некоторых видах пресной воды, особенно содержащих С1" и SO4", потенциал алюминия становится более отрицательным и может произойти перемена полярности пары алюминий—железо. В этих условиях алюминиевое покрытие является протекторным и катодно защищает сталь. Показано, что покрытие из сплава А1—Zn, состоящего из 44 % Zn, 1,5 % Si, остальное — Al, имеет очень высокую стойкость в морской и промышленной атмосферах. Оно защищает также от окисления при повышенных температурах. [c.242]

    Выбор покрытия Основная характеристика Покрытия защитные гуммированные Покрытия гальванические, защитные, цинковые, кадмиевые, никелевые и многослойные Технические требования Методы контроля толщины покрытий [c.54]


    Протекторная защита сравнительно эффективный, легко осуществимый и экономически выгодный метод защиты от коррозии металлических конструкций в нейтральных водных растворах — в морской воде, в почвенных водах и т. п. Поэтому протекторы широко применяются совместно с различного рода покрытиями как дополнительное средство защиты подземных и подводных металлических сооружений — трубопроводов, газопроводов, крупных резервуаров и т. п. Для защиты стальных конструкций чаще всего применяются цинковые и алюминиевые протекторы, а также сплавы на основе этих металлов. В кислых растворах электролитов протекторная защита используется ограниченно вследствие малой катодной поляризуемости защищаемого металла в этих растворах и слишком быстрого растворения металла — протектора. Эффективность протекторной защиты характеризуется целым рядом технологических показателей защитным эффектом, коэффициентом защитного действия, к. п. д., радиусом действия. Первые два показателя приняты также для характеристики эффективности катодной защиты. Под защитным эффектом (з. э.) понимают отношение разности скоростей коррозии металла без электрозащиты и при ее наличии к скорости коррозии без защиты  [c.240]

    Данные, помещенные в табл. 1 [4], на рис. 1 и в табл. 2 и 3, относятся к горячим покрытиям на цинковом подслое и не пригодны для характеристики простых свинцовых покрытий. Для последних имеются данные кратковременных испытаний, суммированные в табл. 4 (стр. 912—913).  [c.907]

    Полярность покрытия в значительной степени зависит от состава среды, и в процессе коррозии в результате поляризации или других факторов может произойти изменение полярности покрытия. Исследование алюминиевых покрытий различной толщины и пористости в жесткой промышленной атмосфере Москвы, отличающейся высоким содержанием сернистых газов, показало, что в пористом покрытии (10-12 мкм) очаги коррозионных поражений концентрируются в местах наличия пор и происходит значительное язвенное разрушение стали. Такой же характер разрушения бьш на образцах с тонким пористым алюминиевым покрытием, испытанных в районе Уфимского нефтеперерабатьшающего завода и Оренбургского ГПЗ, атмосфера которых отличается высоким содержанием Нз 8 и ЗОз Толстые алюминиевые покрытия обнаруживали в этих условиях эффект намного выше, чем у цинковых той же толщины. Об этом свидетельствуют также сравнительные испытания, в промышленных атмосферах предприятий химической и нефтеперерабатьша-ющей промышленности алюминированной стали и цинковых покрытий, полученных различными методами и имеющими толщину слоя 50 мкм (из расплава), 25 мкм (гальваническое с хроматированием), 25 мкм (вакуумное), 100-120 мкм (термодиффузионное), 200-250 мкм (металлизационное). Характеристика промышленных атмосфер и скорость коррозии покрытий, полученных различными методами, приведена в табл.15. [c.59]

    Легирование и обработка металлических покрытий. Защитная способность покрытий зависит от физических и электрохимических параметров. Один из методов повыщения защитной способности покрытий — их легирование различными элементами и обработка составами, способствующими улучшению их физичесю1х параметров и электрохимических характеристик. Результаты исследований показали перспективность использования металлических покрытий в агрессивных средах нефтегазовой промышленности, в том числе в сероводородсодержащих. В сероводородсодержащих средах цинковые покрытия независимо от способа получения как при наличии ионов хлора, так и без них являются анодными по отношению к стали. В последние годы появилось значительное количество публикаций, в которых рассматривается вопрос увеличения защитной способности цинковых покрытий легированием их металлами [c.90]

    На практике используют различные по конструкции и производительности металлизаторы, технические характеристики которых приведены в приложении 3. Для получения качественного цинкового покрытия электрометаллизационные установки должны работать в режиме, указанном в табл. 1. [c.12]

    Сформировавшееся цинковое покрытие затрудняет десорбцию водорода из стальной основы при нагревании образцов, с целью разводороживания , поэтому происходит лишь частичное восстановление ухудшенных при цинковании механических характеристик стали. На рис. 6.20 показано влияние отпуска при 100°С в течение 2 ч на долговечность стали 45, подвергнутой цинкованию в хлористоаммониевом электролите № 2. В табл. 6.25 приведены данные, полученные при скручивании проволочных образцов, подвергавшихся и не подвергавшихся отпуску . Эти данные свидетельствуют о том, что восстановле- [c.311]

    Как следует из данных табл. 6.19 и 6.20, отпуск при 200°С 1—3 ч заметно улучшает механические свойства стали ЗОХГСА, подвергнутой цинкованию в цианистом или кислом электролитах, однако отпуск при 300—350°С более эффективен. Исходные характеристики стали ШХ15 далеко не достигаются путем отпуска при 200°С вылеживание при комнатной температуре дает лишь слабое восстановление прочности стали, что объясняется барьерными свойствами цинкового покрытия при десорбции водорода. Действительно, Ф. Ф. Ажогин, Т. К. Зилова и Н. И. Жукова (см. [10]) наблюдали полное восстановление пластичности при растяжении образцов из стали ЗОХГСА после их отпуска (220°С, 2 ч), если слой цинка (40 мкм) удалялся перед отпуском. [c.358]

    Так, например, осаждение медноцинкового сплава (70% Си и30%2п) на сталь обеспечивает прочность сцепления стальных, изделий с резиной. Замена золотого покрытия сплавом золото— медь дает возможность увеличить износоустойчивость и твердость в два-три раза при одновременной экономии золота. Сплавы олово—цинк (Зп- гп), цинк—кадмий 2п—Сс1), цинк— никель (2п—N1) характеризуются более высокой коррозионной устойчивостью по сравнению с цинковым покрытием, что позволяет рекомендовать эти покрытия взамен цинка. Сплав никель— кобальт (N1—Со) характеризуется высокими магнитными характеристиками, он также используется при получении твердых матриц для литья и прессования пластмассовых изделий. Гальванические сплавы свинец—олово (РЬ—8п), свинец—цинк <РЬ— 2п), свинец—медь (РЬ—Си), свинец—сурьма (РЬ—5Ь) зарекомендовали себя как антифрикционные материалы, имеющие хо-рошую прирабатываемость, низкий коэффициент трения и высокую стойкость в смазочных материалах. Значительный интерес представляют защитно-декоративные покрытия сплавами медь— олово (Си—5п), олово—никель (5п—N1), медь—олово—цинк (Си—5п—2п) и др. [c.3]

    Скорость осаждения цинка в цианидных электролитах ниже, чем в кислых, из-за меньших плотности тока и выхода металла по току. Так как катодный выход металла по току заметно ниже теоретического, часть тока затрачивается на выделение водорода, который частично сорбируется стальным катодом. Как известно, наводороживание приводит к повышению хрупкости, снижению пластичности стали, что резко ухудшает характеристики пружин и осложняет применение для их цинкования цианидных электролитов. Обычно применяемая для обезводороживания цинкованной стали термообработка в течение 2—3 ч при 150—200 °С должна проводиться не более чем через час после получения покрытия. Но и в этом случае не удается полностью удалить водород и восстановить механические свойства деталей. Значительно больший эффект дает термообработка деталей с цинковым покрытием, полученным в цианидном электролите, содержащем добавку соли титана [81] (г/л) 15—25 Zn, 60—80 K N, 80—140 КОН, [c.118]

    Очень важными являются структура и характеристики сушки краски. Если слой краски слишком тонок, то острые выступы на поверхности могут быть не покрыты краской, а если слишком толстый, то в углублениях будет задерживаться газ, способствуя образованию пузырей. После успешного применения кремнийорганической краски, пигментированной цинковой пылью, в настоящее время испытываются и другие краски, использующие кремнийорганнческие связующие (обычно это этилснликат). Во всем мире покрашенные различными видами красок цинковые покрытия показывают хорошие защитные свойства в различных условиях эксплуатации. Вместе с тем поиски наилучшей лакокрасочной системы для цинковых напыленных покрытий еще продолжаются. [c.385]

    Срок службы цинковых покрытий в общем случае пропорционален толщине и не зависит от метода нанесения, хотя сообщалось [18, 19], что цинковое покрытие, полученное способом электроосаждения из сульфатных растворов, дает более высокие коррозионные характеристики, чем покрытие, полученное по этому методу из цианидных растворов. Хадсон [20] показал, что срок службы цинкового покрытия толщиной 42 мкм меняется от 3,5 лет в жесткой промышленной атмосфере (Шеффилд) до более 10 лет в сельской атмосфере (Ланв-ртид Уэллс). По данным Гилберта [21], он составляет 4—5 лет в Лондоне, 9 лет в Кембридже и 18 лет в Брехэме. [c.398]

    Установлено, что 0,5 % отказов в радиоэлектронной аппаратуре связано с воздействием биологической среды. Наиболее часто поражаются микроорганизмами следующие узлы и детали оплетки и нитки, в том числе пропитанные электроизоляционным лаком, прокладки из фибры, войлока, фетра, картона, резинотехнические изделия, полимеры, лакокрасочные и металлические (цинковые, кадмиевые) покрытия, олово в местах пайки, детали и узлы из алюминиевых и магниевых сплавов (Д16Т, ДС-16Т, ЛОМ, МА2-1, АМг, АМц, МА-12, АВМ) и из стали (марки 10, 45, 40, ЗОХГСА). В биоционозах большое значение имеют грибы. Их рост приводит к перегреву, резкому снижению сопротивления и пробою изоляции, нарушению герметичности, повышению влажности внутри прибора, нарушению контакта в результате окисления или их замыкания в результате образования электропроводящих мостиков, изменению товарного вида изделия, разрушению покрытий и других неметаллических материалов. Разрастание мицелия гриба внутри приборов может влиять на характеристики электромагнитного поля электронной схемы. [c.537]

    ГОСТ 2838—80 устанавливает общие технические характеристики гаечных ключей односторонних и двусторонних с открытым зевом, кольцевых, комбинированных (с открытым и кольцевым зевом) и ключей для круглых шлицевых гаек значения крутящих моментов, характеризующих прочность ключей, предельно допустимые отклонения размеров зева, а также защитно-декоративные покрытия в зависимости от условий эксплуатации. Ключи для легких условий эксплуатации должны иметь о кисное, или фосфатное с промасливаннем, или же хромовое покрытие для средних условий — цинковое или хро- [c.256]

    Предварительно было изучено влияние основных пигментов (титановых белил, цинковых белил, зеленой окиси хрома, сажи, пигмента черного № 1063) и наполнителей (талька, слюды), применяемых при производстве фторорганических покрытий, на физико-механические и диффузионные характеристики покрытия. На основании полученных результатов были выбраны следующие компоненты (факторы), определяющие качество покрытия сополимер винилиденфторнда с тетрафторэтиленом с соотношением моиомер-11ых звеньев 2 1 (Хо), титановые белила марки РО-2 (,гО, цинковые белила марки М-1 (хг), тальк (Хз), пигмент черный 1063 (а) и фторид железа (х ). [c.262]

    Наиболее широкое применение получили кислые, цианистые и цинкатные электролиты цинкования с органическими добавками, разработанными Институтом химии и химической технологии Литовской Академии наук, а также Днепропетровским химикотехнологическим институтом, представленные в ГОСТ 9.305—84. Эти добавки расширяют рабочий диапазон плотностей тока, благоприятно сказываются на рассеивающей способности электролитов, позволяют получать блестящие покрытия. Органический компонент электролита участвует в процессе электрокристаллизации цинка, что оказывает влияние на антикоррозионные и некоторые технологические свойства покрытий. Это же обстоятельство является причиной повышения внутренних напряжений в осадках, что в ряде случаев ограничивает предельную толщину покрытий. Осадки цинка толщиною свыше 15 мкм, формированные в электролите с добавкой Лимеда НБЦ, склонны к растрескиванию. Эксплуатационные характеристики дифосфатных электролитов — выход по току, рабочий диапазон плотностей тока, рассеивающая способность — сопоставимы с цианидными. Анодный процесс в них часто протекает с затруднениями, вследствие пассивации цинковых анодов. Этому способствует малая концентрация в электролите свободных дифосфат-ионов, низкая температура, высокая анодная плотность тока. В качестве депассиватора в электролит вводят NH4 I, (NH4)2HP04, Na2 a04, цитрат аммония или натрия. [c.120]

    Цинковый крон можно также смешивать с фталоцианиновыми пигментами для получения зеленых отделочных красок, известных под названием жадентовая зеленая , яблочная зеленая и т. д. Эти смеси более ярки и значительно более светостойки, чем обычные хромовые зеленые или смеси со свинцовохроматными пигментами. Стоимость их выше стоимости хромовых зеленых, но в отделочных покрытиях высокого качества они окупаются вследствие светостойкости и выдающихся характеристик. [c.148]

    Пропускание света пленками в УФ-области спектра подчиняется иным закономерностям (рис. 4.38, кривые 1—5). Степень поглощения пленкообразователями лучистой энергии резко увеличивается в коротковолновой области спектра, при Х<340 нм. Исключение составляют полифторолефины, прозрачность которых простирается на область до 250 нм. Введением пигментов и специальных химических веществ можно в широких пределах регулировать спектральную характеристику покрытий. Так, цинковые белила, сульфат бария, сульфид цинка, диоксид титана поглощают основную массу УФ-излучения. Технический углерод, напротив, более прозрачен в УФ-области спектра, чем в видимой и инфракрасной. Поэтому белое покрытие с оксидом цинка в УФ-свете кажется черным, а черное с техническим углеродом, — наоборот, белым. Наряду с пигментами интенсивно увеличивают светопоглощение в УФ-области, главным образом между 300 и 400 нм, соединения, представляющие собой производные гидроксибензофенона (рис. 4.38, кривые 4, 5) и ферроцена, бензотриазолы, арилсалицилаты, бензидин, фенолят меди и др. [c.130]


Смотреть страницы где упоминается термин Цинковые покрытия характеристика: [c.360]    [c.77]    [c.236]    [c.121]    [c.124]    [c.44]   
Коррозия (1981) -- [ c.412 , c.414 , c.415 ]




ПОИСК





Смотрите так же термины и статьи:

Цинковая



© 2025 chem21.info Реклама на сайте