Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Водород десорбция

    Более новым методом выделения метана и водорода с одновременным фракционированием остаточных углеводородов является гиперсорбция, непрерывный процесс адсорбции — десорбции на [c.45]

    Доля катодного процесса с кислородной деполяризацией, по-видимому, невелика, поскольку поступление кислорода с поверхности в вершину трещины затруднено. Ионы водорода адсор бируются на поверхности металла, восстанавливаются, получая электроны, до атомарного и покидают поверхность, являющуюся в данном случае катализатором реакции восстановления водорода. Десорбция атомов водорода с поверхности металла протекает по механизму параллельных реакций часть атомов абсорбируется (поглощается) объемом металла, распространяясь по нему, часть, образуя молекулы, уходит в атмосферу. Водород, попадая в металл. Диффундирует по его объему в зону максимальных трехосных напряжений, которая находится перед вершиной трещины [37, 49]. Водород, поступивший в эту зону, ускоряет процесс коррозионного подрастания трещиНы, так как наводороживание металла существенно снижает его коррозионную стойкость [41]. [c.68]


    Десорбция и растворение газа обеспечивают поддержание на поверхности электрода давления водорода несколько более низкого, чем равновесное, отвечающее данной поляризации. Если увеличить поляризацию, повысив э. д. с., поданную на электроды, то давление газа возрастет и установится новое значение потенциала, тоже лишь немного отличающееся от равновесного. При более высоком давлении водорода десорбция и диффузия газа в раствор происходят несколько быстрее, что и обусловливает некоторый рост плотности тока. [c.546]

    В 1926 г. Симон применил для получения температур, ниже температуры жидкого водорода, десорбцию гелия из угля [4, 20]. Для этого необходимо следующее адсорбция гелия углем при самых низких температурах с отведением выделяющегося тепла изоляция сосуда с углем от теплового контакта с внешней средой откачивание адсорбированного гелия для обеспечения процесса десорбции, дающего охлаждающий эффект. [c.22]

    С увеличением длины цепи десорбция образовавшихся молекул протекает все медленнее, так что остается больше времени для гидрирования их присутствующим водородом. Это объясняет тот факт, что содержание ненасыщенных соединений во фракциях продуктов синтеза уменьшается по мере их утяжеления. В известных условиях может проходить также и обратный процесс распада высокомолекулярных углеводородов, причем создается известное равновесие между процессами полимеризации и распада . [c.86]

    Независимо от того, происходит разряд в кислой или в щелочной среде, его непосредственным продуктом будут адсорбированные электродом атомы водорода . Для стационарного протекания электролиза необходимо поддерживать постоянной поверхностную концентрацию атомов водорода, т. е. обеспечивать их непрерывный отвод с поверхности катода. Атомы водорода могут удаляться тремя путями каталитической рекомбинацией, электрохимической десорбцией и эмиссией. При каталитическом механизме отвод атомов водорода происходит за счет их рекомбинации в молекулы с одновременной десорбцией  [c.403]

    Т. е. обусловлено замедленностью рекомбинации атомов водорода в молекулу (каталитическая десорбция), было высказано впервые Тафелем в 1905 г. и положено в основу первой количественной трактовки кинетики электродных процессов. [c.408]

    При электрохимическом выделении водорода удаление его адсорбированных атомов может совершаться несколькими способами. Если эта стадия (стадия III в приведенной схеме) является замедленной, то скорость всего процесса должна определяться скоростью наиболее эффективного из указанных выше трех механизмов десорбции. Замедленная рекомбинация, например, означает, что каталитическое образование молекул водорода отличается большим торможением, чем разряд или стадия транспортировки, и в то же время совершается заметно быстрее, чем электрохимическая десорбция или эмиссия водородных атомов. При близких значениях [c.404]


    Тип механизма Разряд Рекомбинация Электрохимическая десорбция Отвод растворенного водорода [c.406]

    Гидрирование аренов изучали многие исследователи. Однако в стереоспецифическом аспекте эта реакция обсуждена еще недостаточно, так как большинство работ носит чисто препаративный характер. В основном изучено гидрирование ди- и полиалкилбензолов на платиновых и никелевых катализаторах. Оказалось, что в присутствии различных катализаторов наряду с цис-то-мером образуются транс-изомеры. Между тем, казалось бы, что простое присоединение шести атомов водорода к ароматическому ядру при его плоскостной адсорбции должно приводить исключительно к цис-форме. Поэтому основной интерес здесь представляют следующие вопросы как получаются транс-изомеры циклогексанового ряда, через какие промежуточные стадии идет их образование, имеет ли место десорбция (хотя бы частичная) этих промежуточных соединений в объем с последующей повторной адсорбцией на катализаторе или же все стадии проходят непосредственно в адсорбированном слое. [c.46]

    Оба возможных варианта разряда ионов водорода (либо молекул воды) — на свободной поверхности катода и па адсорбированных атомах водорода — уже рассматривались в предыдущей главе. Здесь следует подчеркнуть, что во втором случае одновременно с актом переноса заряда происходит снятие адсорбированного атома водорода и его удаление в виде молекулы этот процесс называется поэтому электрохимической десорбцией, а вызванное его [c.406]

    Представление о том, что электрохимическая десорбция может определять скорость катодного выделения водорода, было сформулировано впервые Гейровским в 1925 г. [c.407]

    Если использовать экспериментальные данные о степени заполнения поверхности адсорбированными атомами водорода, то можно сделать достаточно вероятные предположения о том, каким путем преимущественно соверщается отвод адсорбированных водородных атомов. Скорость разряда на адатомах водорода (электрохимическая адсорбция) зависит от поверхностной концентрации водородных атомов в первой степени, а скорость рекомбинации — во второй. Поэтому на металлах, слабо адсорбирующих водород, удаление его с поверхности должно осуществляться главным образом за счет электрохимической десорбции. Наоборот, с поверхности металлов, обладающих высокой адсорбционной способностью по отношению к атомам водорода, наиболее эффективным будет их отвод путем каталитической рекомбинации (Фрумкин). [c.413]

    Представление о том, что на ртути выделение водорода совершается по механизму Фольмера — Гейровского (замедленный разряд с последующей электрохимической десорбцией водородных атомов), разделяется в настоящее время большинством электрохимиков. Необходимо, однако, отметить, что по Кобозеву, который отрицает возможность замедленного протекания разряда, перенапряжение водорода на ртути является результатом избыточной энергии свободных атомов водорода, эмитируемых с ее поверхности. Эмиссия свободных водородных атомов (— это, по Н. И. Кобозеву, наиболее эффективный путь отвода атомов водорода с по- [c.413]

    Недостаточная скорость десорбции образующихся продуктов е поверхности катализатора при недостаточном парциальном давлении водорода.  [c.13]

    Механизм Фольмера — Тафеля отвечает тому случаю, когда замедленно протекает разряд, а отвод образовавшихся атомов водорода осуществляется их рекомбинацией. По механизму Фольмера— Гейровского, замедленной стадией по-прежнему будет разряд, но удаление атомов водорода происходит путем их электрохимической десорбции. По механизму Тафеля — Гориучи, рекомбинация водородных атомов определяет скорость всего процесса и в то же время обеспечивает отвод атомов водорода, образующихся в результате разряда, протекающего без торможений. В основе механизма Гейровского — Гориучи лежит предположение, что скорость определяется стадией электрохимической десорбции, являющейся одно- [c.405]

    Повышение концентрации сероводорода в водных средах значительно больше влияет на проникновение водорода в сталь, чем на общую коррозию. Кроме того, на проникновение водорода в зависимости от температуры влияют ионизация железа, перенапряжение водорода, соотношение адсорбции и десорбции водорода, диффузия водорода в металл. [c.148]

    Однако не всякая поверхность твердого тела обладает ката — литической активностью. На поверхности одних веществ может происходить лишь физическая адсорбция, а других — хемосорбция с более прочной химической связью. Так, на поверхности активированного угля водород и азот могут адсорбироваться лишь физически, а кислород и при высоких температурах водяной пар подвер — гаются химической адсорбции и при их десорбции выдел [ются не О и HjO, а продукты их хемосорбции в виде СО, СО и Н . Это свидетельствует о том, что тип и прочность промежуточной (то есть [c.85]


    Эти наблюдения бы.тн использованы для выяснения механизма орто-пара-превращения водорода и обмена Нг—Вг. Обе эти реакции легко проходят на поверхности , N1, Ре, Рг, Рс1 и других металлов переменной валентности. Начальная скорость перехода пара-Н в орто-Н при постоянном давлении, как было показано, пропорциональна парциальному давлению пара- [16, 32, 33]. Такая зависимость может быть, по-видимому, удовлетворительно объяснена, если принять, что при насыщении поверхности водородом идет его одновременная диссоциация, и учесть возможную десорбцию газа с поверхности  [c.547]

    На схеме а показано присоединение хемосорбирован-ного атома дейтерия к комплексу снизу. На схеме б физически адсорбированная и частично деформированная (растянутая) молекула дейтерия атакует комплекс сверху. В результате атаки один атом дейтерия присоединяется к комплексу, а другой переходит в хемосорбирован-ное состояние. После присоединения дейтерия или водорода к я-аллильному комплексу и после десорбции [c.67]

    При изучении гидрогенолиза этана в присутствии металлического никеля при 170—320 °С было показано, что по этану реакция имеет первый порядок, а по водороду — отрицательный при низких температурах и нулевой при высоких [41]. Путем сравнения данных по В—Н-обмену в одинаковых условиях в метане и этане доказано, что десорбция метана протекает с большой скоростью и не может быть лимитирующей стадией при гидрогенолизе этана. [c.96]

    Теорию Гейровского в дaльнeйшe существенно развил Гориучи с сотр. (1936). Согласно Гориучи, процесс электрохимической десорбции водорода при электролизе растворов кислот совершается следующим образом. Первой стадией является разряд гидроксо-ниевого иона и образование атома водорода, адсорбированного металлом Н—М  [c.407]

    Подчеркивая сложность механизма гидрогенолиза на алюмоплатиновом катализаторе и большую, подчас решающую, роль условий проведения опытов, Го полагает, что лимитирующей стадией реакции является стадия десорбции промежуточного комплекса с поверхности катализатора с одновременным разрывом С—С-связи. По его мнению, образование такого комплекса происходит в момент взаимодействия молекулы углеводорода из фазы Ван-дер-Ваальса с хемосорбированной на катализаторе молекулой водорода. Как справедливо замечает и сам автор, предложенный механизм по существу не отличается от механизма диссоциативной адсорбции Тейлора [164]. По нашему мнению, к нему относятся все замечания, приведенные выше при обсуждении механизма, предложенного в работе [152]. [c.132]

    Следовательно, он одновременно ускоряет десорбцию и рекомбинацию адсорбированных молекул путем гидрирования связей С—М на поверхности. Кроме того, промотирующее влияние водорода заключается в его способности удалять необратимо адсорбированные углеводороды, например бензол и алкены, с поверхности металла, что приводит к восстановлению активности катализаторов. [c.228]

    Впоследствии близкие взгляды были высказаны и другими исследователями, например Конвеем и Бокрисом, Впджем, Трассати и др. Этими и некоторыми другими авторами была отмечена необходимость учета конкурентной адсорбции воды и водорода. Свободная энергия адсорбции воды точно неизвестна по ориентировочным подсчетам Бокриса она для металлов первой группы близка к 100 кДж-моль . Выяснилось также, что для ряда металлов, адсорбирующих водород, перенапряжение не уменьшается, а растет с увеличением энергии связи М—Н (Рютчи, Делахей, Парсонс). Эти металлы образуют подгруппу второй группы, по классификации Антропова, в которой преобладающим оказывается эффект увеличения энергии активации рекомбинации или электрохимической десорбции с ростом эшфгии связи М—Н. Минимальное [c.412]

    Первичная активация осуществляется лучистым нагревом геттера с помощью внешнего источника или пропусканием по подложке электрического тока одновременно вспомогательным насосом откачиваются вьщеляющиеся газы. В термодесорбционном спектре, полученном, к примеру, при активации геттера ST707, наблюдаются пики, соответствующие вьщелению водяных паров (температурный интервал 320-500К, максимум при Т = 383 К), оксида углерода (температурный интервал 360-680 К, максимум при Т = 473 К) и водорода. Десорбция водорода происходит в температурном диапазоне 400—1050 К и характеризуется двумя пиками с максимумами при 503 и 813 К их примерное соотношение 1 8. Основное количество газа выделяется в интервале температур 610—1050 К. Максимальные высоты пиков, соответствующих парам воды, и оксиду углерода, относятся к высоте основного пика водорода как 1 2,6 и 1 4,2. [c.230]

    В этом комплексе частицы Н и Н+, располагаясь симметрично относительно оси связи между молекуло воды и металлом (Н2О—М), образуют молекулярный ион Н2+, связанный одновременно с поверхностью металла и с молекулой воды. Связь с металлом обеспечивается за счет валентного электрона, связь с молекулой воды — за счет результативного положительного заряда иона. Переходный комплекс может появиться и без предварительного акта разряда и образования адсорбированного атома водорода. Для этого необходимо, чтобы один из двух ближайших адсорбированных понов водорода приобрел электрон. Электрохимическая десорбция, по Гориучи, таким образом, не обязательно должна проходить через разряд гидроксониевого иона на поверхности металла, уже частично покрытой атомами водорода. [c.407]

    С меньщей уверенностью можно сделать заключение о природе процесса на других металлах второй электрохимической группы — свинце, цинке, кадмии и таллии. Больщинство экспериментальных данных свидетельствует о замедленном протекании разряда с последующей электрохимической десорбцией атомов водорода. Заметное повышение перенапряжения Еюдорода при переходе от положительно заряженной поверхности к поверхности, заряженной отрицательно, наблюдается на свинце, кадмии и таллии и связано с перестройкой двойного слоя, приводящей к десорбции анионов и прекращению их активирующего действия на разряд положительно заряженных гидроксониевых ионов Н3О+ (см. рис. 19.1). Если -бы скорость выделения водорода определялась не разрядом, а другой стадией, например рекомбинацией, то изменение структуры двойного слоя не могло бы вызвать такого изменения водородного перенапряжения. [c.414]

    Перед замещением инертного газа на водяной пар необходимо убедиться, что в последнем не содержится конденсата. Далее температура в слое катализатора поднимается до 370—420 °С, проводится пропарка катализатора водяным паром с целью десорбции из пор катализатора жидкпх остатков и удаления части высокомолекулярных отложений, наиболее богатых водородом. Продолжительность пропарки2—4ч при расходе водяного пара 400—900 м /ч (при нормальных условиях) на 1 м катализатора. [c.130]

    Если пленку чистого вольфрама поместить в атмосферу Нг при температуре 78° К, то происходит быстрое насыщение поверхности атомарным водородом. (Одновременно с сорбцией происходит диссоциация водорода.) Полное насыщение поверхности соответствует концентрации Нг около 10 мм рт. ст. Сорбция первых 75% Нг происходит с выделением тепла (экзотермическая область, —40 ккал). Десорбция Нг весьма маловероятна при этих температурах согласно Робертсу [28], десорбция водорода с поверхности вольфрама становится заметной лишь при температурах выше 600° К. Однако, по данным Трепнелла [27], с момента, когда степень насыщения поверхности достигает величины 0,8, и вплоть до полного насыщения поверхности величина АЯз близка к нулю. Поэтому следует ожидать, что десорбция этой последней доли сорбированного Нг будет идти в значительной степени и при 78° К. [c.547]

    Даже при концетттрацпп примеси Ю ) моль/л можно обнаружить изменение кривой EI 72J. Это, конечно, во шошно в тех случаях, когда сорбция и десорбция на активных центрах поверхности электрода являются процессами, лимитирующими скорость реакции, как, например, в случае орто-иара-препращения водорода. [c.557]

    Тщательное исследование стереохимии гидрирования ксилолов и некоторых их тетрагидропроизводных позволило Сигелю и сотр. [1, 77] высказать предположение, что циклоалкены получаются путем г ис-присоединения к молекуле ксилола четырех атомов водорода со стороны поверхности катализатора с десорбцией циклоалкена, после чего может произойти повторная адсорбция и исчерпывающее гидрирование в соответствии со схемой, описанной выше (см. с. 23, 24). [c.49]


Смотреть страницы где упоминается термин Водород десорбция: [c.265]    [c.373]    [c.373]    [c.76]    [c.191]    [c.265]    [c.247]    [c.98]    [c.404]    [c.414]    [c.417]    [c.419]    [c.76]    [c.71]    [c.217]    [c.13]   
Очистка технологических газов (1977) -- [ c.119 , c.120 ]




ПОИСК





Смотрите так же термины и статьи:

Десорбция



© 2025 chem21.info Реклама на сайте