Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окись азота влияние концентрации

    Результаты расчетов для двух исходных смесей (а = 4 1 и а = = 1 1) и двух давлений (1 атм и 50 мм рт. ст.) приведены на рис. У.15. Их главной особенностью является наличие при учете диссоциации максимумов на кривых % N0 = / (Т) в области температур 3000—3500 °К в зависимости от давления. Таким образом оказывается, что путем нагревания воздуха можно получить окись азота в максимальной концентрации около 5 моль %. При высоких температурах существенно влияние давления, его повышение уменьшает диссоциа- [c.153]


    Для объяснения этих и других особенностей ингибирования окисью азота Войцеховский и Лейдлер [34] предположили, что влияние окиси азота на распад органических соединений связано с наличием нового свободно-радикального процесса. Возможно, что окись азота инициирует цепи путем отрыва атомов водорода с той же скоростью, с какой она обрывает их. Этот механизм дает возможность объяснить, почему скорость реакции в присутствии избытка окиси азота часто не зависит от ее концентрации. Подобного типа механизм предложен для ингибирования реакции распада пропиленом. На стр. 187 рассматривается механизм, предложенный для реакций распада этана, ингибированной окисью азота и пропиленом. [c.183]

    Влияние окиси азота на этот процесс является довольно сложным. При низких давлениях ацетальдегида небольшие количества окиси азота ингибируют реакцию, но с увеличением ее концентрации окись азота становится катализатором. По-видимому, окись азота отрывает атомы водорода от ацетальдегида и тем самым инициирует цепи, а также и обрывает их, реагируя с радикалами. Пропилен в этой реакции является только ингибитором. Дальнейшие исследования должны пролить свет на механизм действия этих ингибиторов. [c.189]

    Теренин [91, 92] впервые высказал мысль, что парамагнитные частицы могут индуцировать синглет-триплетную интерконверсию. В этом случае интерконверсия совершается с сохранением суммарного спина всех частиц. Интерконверсия под действием парамагнитных газов (кислород, окись азота) и парамагнитных ионов металлов была предметом многих исследований, начиная с работ Теренина и Карякина [93—95]. Тушение кислородом триплетных состояний подробно исследовано в работе [96]. Установлено, что парамагнитные частицы вызывают не только синглет-триплетную, но и триплет-синглетную интерконверсию. Методом импульсного возбуждения было показано, что парамагнитные ионы металлов снижают концентрацию триплетных молекул нафталина, тогда как диамагнитные ионы такого действия не оказывают [97]. Современное состояние теории влияния парамагнитных частиц на интеркомбинационные переходы изложено в монографии [98]. [c.30]

    Определенное влияние на качество метанола может оказывать окись азота, которая появляется на стадии подготовки газового сырья. Концентрация ее в исходном газе незначительна (до 0,1 см /м ), но, по некоторым данным, окись азота является катализатором образования сложных органических соединений в процессе синтеза метанола. [c.94]


    В настоящее время основным сырьем в производстве аммиака являются природный газ, попутные газы нефтедобычи, жидкие углеводороды и коксовый газ. Доля аммиака, получаемого из твердого топлива и электролитического водорода, все более снижается. При современных методах получения аммиака все большее значение приобретают процессы очистки газа. Из технологических газов на разных стадиях получения аммиака удаляют такие примеси, как сернистые соединения, двуокись и окись углерода, ацетилен, окислы азота, кислород и др. Эти примеси, содержащиеся в газе в различных концентрациях, по-разному влияют на процесс. Например, сернистые соединения оказывают сильное влияние на все катализаторы, применяемые в синтезе аммиака серосодержащие соединения, присутствующие в исходном углеводородном сырье, ухудшают работу катализаторов конверсии метана, что приводит к повышению температуры процесса и увеличению расхода кислорода. При использовании наиболее экономичного способа производства аммиака, который основан на методе бескислородной каталитической конверсии метана в трубчатых печах, содержание сернистых соединений в природном газе не должно превышать 1 мг/м . [c.7]

    Если пренебречь влиянием водорода на равновесие в системе азот — окись углерода, расчет такого процесса можно проводить но данным для двойной смеси [30]. На рис. УП-10 приведена рассчитанная по этим данным зависимость давления окиси углерода над раствором от ее концентрации в жидком азоте при различных температурах. Как видно из рисунка, растворимость окиси углерода [c.359]

    Вредными компонентами отработанных газов дизельных двигателей являются также окись углерода, альдегиды и окислы азота. Однако содержание окиси углерода имеет значение лишь при работе двигателей в шахтах. Окислы азота (в основном N0 и ЫОг), содержащиеся в отработанных газах в более высоких концентрациях, вызывают больше опасений, чем окись углерода или альдегиды. Известно, что окислы азота под влиянием интенсивного УФ-облучения могут вступать в реакции с несгоревшими углеводо- [c.338]

    Яды специфичны для различных катализаторов, как и для различных реакций, в которых катализаторы принимают участие. Например, водород действует как яд при образовании воды на сплавах благородных металлов и железа, а кислород отравляет синтез воды на сплавах из благородных металлов и никеля [238] Вода при высокой концентрации отравляет сжигание окиси >тлерода иа различных катализаторах [56]. Соединения мышьяка являются сильными ядами для катализаторов, применяемых в контактном процессе получения серного ангидрида. Мышьяковистый ангидрид — сильный яд для каталитической гидрогенизации с платиной вследствие восстановления его в арсин. Тот же самый яд оказывает относительно слабое действие на активность платины при разложении перекиси водорода. Таким образом, некоторые вещества могут действовать как яды для определенных каталитических реакций, в других случаях совсем не действуя они могут даже действовать как промоторы в некоторых каталитических реакциях. Висмут, сильный яд для железа при каталитической гидрогенизации, является одним из наиболее активных промоторов для же леза при каталитическом окислении аммиака в окись азота. Подобным образом фосфат кальция является промотором для никеля в каталитической гидрогенизации, между тем как фссфор или фосфин сильные яды. Никель, отравленный тиофеном, не гидрогенизирует ароматический цикл, в то время как его способность гидрогенизировать олефины не нарушается [130, 161]. Сера или сульфиды, которые обычно действуют как яды, при каталитическом восстановлении бензоилхлорида и гидрогенизации смол могзт действовать как катализаторы [184]. Сероуглерод действует как ускоритель в процессе растворения кадмия в соляной кислоте [226]. Есть случаи, когда вещество, взятое в маленьких количествах, остается неактивным, но при применении в большом количестве действует как яд. Например, в реакции нафталина с японской кислой землей хлороформ неактивен в малом количестве и не оказывает никакого отравляющего действия, но взятый в большом количестве вызывает уменьшение количества смолы, образующейся с нафталином под влиянием земли. Хлористоводородная кислота, образующаяся из хлороформа, взятого в больших количествах, уменьшает каталитическую активность [134]. [c.392]

    Вероятно, именно реакции (39) и (40) являются причиной наблюдаемого в присутствии метаванадата аммония снижения выхода адипиновой кислоты при повышении давления. Вследствие реакции (40) снижается действующая концентрация N0 , что неизбежно вызывает торможение регенерации иона перванадила но реакции (39), и повышается концентрация ионов нитрозила. При повышении давления равновесие реакции (40) сдвигается вправо и возникает избыток ионов нитрозила. Это увеличивает вероятность повторного нитрозирования циклогексанона (образование 2,6-динитродинитрозо-циклогексанона), а следовательно, и образования глутаровой кислоты, что подтверждается на опыте (рис. 65). Концентрацию ионов нитрозила можно снизить, добавляя соединения, связывающие окись азота с образованием комплексных ионов. Так, добавление солей железа полностью устраняет отрицательное влияние давления, а при введении солей меди выход адипиновой кислоты даже возрастает с повышением давления до 3,5 ат. [c.167]


    Химически чистая окись углерода дает менее воспроизводимые результаты, так как в топливоподводящих линиях всегда присутствуют следы влаги. Фиг. 12 показательна в смысле главных эффектов. Верхняя кривая представляет температуры зажигания струей горячей окиси углерода (х. ч.), втекающей в холодный воздух, в который постепенно добавляется метай (концентрация метана отложена вдоль абсциссы). При наличии небольших количеств метана в воздухе температура зажигания вначале понижается, но затем быстро возрастает, достигая почти 1200° у бедного предела метана и почти 1400° вблизи стехио-метрического состава, что соответствует температуре зажигания этой смеси струей горячего азота. Остальные кривые показывают, как при добавлении к окиси углерода водорода кривая становится более плоской и каким образом водород противодействует влиянию метана. [c.68]

    ОПЫТОВ окись углерода при добавках в малых концентрациях вела себя как инертный газ. Несмотря на то, что влияние азота на второй предел уже изучалось Линнетом и Силли, опыты с азотом были повторены для проверки неожиданных результатов, кото рые были получены ранее этими авторами. [c.129]

    Работу Нагеля [133] повторили Кобе и Хосмеп [72]. В случае смеси 11% аммиака и 89% кислорода степень превращения аммиака в закись азота составила — 40%, причем максимальная степень превращения наблюдается при температуре около 225° С на катализаторе висмут — окись железа. Кобе и Хосмеп подчеркивают важное значение объемной скорости, концентрации аммиака в кислороде и времени действия катализатора, и в их статье описывается влияние этих переменных на поведение катализатора. Данные о влиянии температуры на выход закиси азота, окиси азота и азота при трех различных скоростях подачи газа обобщаются также в недавнем сообщении Завадского [141] (рис. 4). [c.314]

    Было проведено много исс.ледований для подыскания таких реагентов, которые приобретали бы специфическую окраску при контакте с определенными газообразными компонентами. В частности, был проведен ряд исследований в области колориметрических определений малых концентраций кислорода (10 —10 %). Для этой цели было предложено использовать натрий-антрахинон-(З-сульфонат [20, 21]. Анализ заключается в том, что определенный объем исследуемого газа ириводится в контакт с восстановленным реагентом и измеряется изменение его цвета при помощи спектрофотометра. Определения могут быть сделаны в присутствии таких газов, как азот, этилен, пропилен, бутан, бутадиен, водород, ацетилен. Для устранения влияния углекислого газа применяется щелочной поглотитель. Окись углерода, если она присутствует в значительных количествах, несколько влияет на показания. [c.339]

    А. Санто на опытной установке Боршодского азотнотукового завода (Венгрия) была проверена возможность одновременного удаления паров воды и двуокиси углерода из технологического газа (азото-водородной смеси), прошедшего отделение медноаммиачной очистки. При скоростях газа 13,7 л см мин, давлении 40 ат и исходной температуре газа +5° С цеолиты снижали концентрацию СОг в течение 9 ч от 40 до 10—12 см 1м (в период первых 2—3 ч до нуля). Опыты показали, что изменение давления от 20 до 120 ат и увеличение скорости с 13,7 до 25 л1см мин при небольшом влаго-содержании газа практически не оказывали влияния на степень его очистки. С повышением давления повышалась динамическая активность цеолита. Одновременно с адсорбцией паров воды и двуокиси углерода цеолиты адсорбировали также и окись углерода, снижая ее содержание с 23 —26 до 12—14ррМ. [c.57]

    По Ледебуру, окислы металла восстанавливают водородом при высокой температуре. Образовавшуюся при этом воду поглощают фосфорным ангидридом, взвешивают и пересчитывают на кислород. Метод Ледебура был усовершенствован Кейтманном и Обергоффером [15], Гартманом [16] и др. Было установлено, что при 950° С водород восстанавливает только окислы железа, при 1100—1150° С — также окислы марганца. Вейнберг [17] считает, что, добавляя плавень, можно при 1200° С восстановить водородом также двуокись кремния и окись алюминия. Однако в результате дальнейших исследований [18] было установлено, что определение кислорода в сталях с большим содержанием кремния приводит к заниженным результатам. В этом случае содержащиеся в стали окислы железа частично восстанавливаются кремнием с образованием двуокиси кремния, которая не восстанавливается водородом. Было выяснено, что в углеродистых сталях окислы железа частично восстанавливаются углеродом, содержащимся в стали. При этом образуется окись и двуокись углерода. Были предложены способы количественного определения окислов углерода. Было исследовано также влияние относительно больших концентраций азота, фосфора и серы. При высоких температурах водород реагирует с этими элементами, образуя соответственно аммиак, фосфористый водород и сероводород, что искажает результаты определения кислорода. Таким образом, водородный метод определения кислорода может давать верные результаты лишь при анализе железных порошков с малым содержанием [c.32]

    Изучение влияния добавки к газу синтеза газоля (углеводородов С3+С4, получаемых в процессе синтеза), чистого пропилена и бутилена было проведено Е. Рушенбургом в Дрезденской высшей технической школе [21]. Опыты были произведены в лабораторных реакторах, содержавших около 40 г кобальтового катализатора фирмы Рурхеми . Добавлявшийся к газу синтеза газоль содержал (объемные %) 11,9 пропилена, 23,0 бутилена, 37,1 пропана, 21,5 бутана и 6,5 примесей (азот, этилен, этан, окись углерода и двуокись углерода). В табл. 132 приведены результаты, показывающие изменение Степени превращения олефинов в зависимости от парциального давления олефинов в газе. Опыты 1—5 и 10—12 проведены с катализатором, уже работавшим в течение 300—500 час. при 187—191°. Повидимому, эти результаты сравнимы в пределах воспроизводимости опытов. Результаты этих опытов показывают, что степень превращения олефинов газоля не зависит от объемной скорости газа и приблизительно обратно пропорциональна квадратному корню из концентрации олефинов. Сравнение результатов опытов с чистым пропиленом (опыты 13—18) с результатами опытов с газолем (опыты 5 и 10— 12) и с чистым бутиленом (опыты 19 и 20) показывает, что для пропилена степень превращения в тех же условиях была в 5—10 раз меньше. [c.280]


Смотреть страницы где упоминается термин Окись азота влияние концентрации: [c.324]    [c.63]    [c.295]   
Технология азотной кислоты (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние концентрации



© 2025 chem21.info Реклама на сайте