Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Уран, излучение радиоактивное

    Уран обладает радиоактивными свойствами. Излучение это является следствием распада ядер атомов урана и превращения их в атомы других радиоактивных элементов. Этот процесс протекает медленно, но непрерывно и не зависит ни от состава соединения, в которое входит уран, ни от условий (температуры, давления). [c.434]

    В 1900 г. Крукс (см. гл. 12) обнаружил, что свежеприготовленные соединения чистого урана обладают только очень незначительной радиоактивностью и что с течением времени радиоактивность этих соединений усиливается. К 1902 г. Резерфорд и его сотрудник английский химик Фредерик Содди (1877—1956) 5 высказали предположение, что с испусканием альфа-частицы природа атома урана меняется и что образовавшийся новый атом дает более сильное излучение, чем сам уран (таким образом, здесь учитывалось наблюдение Крукса). Этот второй атом в свою очередь также расщепляется, образуя еще один атом. Действительно, атом урана порождает целую серию радиоактивных элементов — радиоактивный ряд, включающий радий и полоний (см. разд. Порядковый номер ) и заканчивающийся свинцом, который не является радиоактивным. Именно по этой причине радий, полоний и другие редкие радиоактивные элементы можно найти в урановых минералах. Второй радиоактивный ряд также начинается с урана, тогда как третий радиоактивный ряд начинается с тория. [c.164]


    Несколько открытий, сделанных в конце прошлого столетия, совершили переворот в химии и физике. Одним из них было открытие в 1896 г. Анри Бекке-релем радиоактивности. Занимаясь изучением фосфоресценции, Беккерель обратил внимание на действие, как он предполагал, света на сульфат калия-уранила. Он заметил, что после выдержки урановой соли на свету, она испускала излучение, которое вызывает потемнение фотографической пластинки даже тогда, когда между фотопластинкой и солью находились тонкие слои различных непрозрачных материалов. Это наблюдение само по себе не было удивительным, поскольку использовался внешний источник энергии. Однако дальнейшее изучение привело к необычному результату. Беккерель нашел, что интенсивность лучей, испускаемых солью урана, совсем не зависит от длительности выдержки соли на свету. Кристаллы, полученные и содержащиеся в темноте, давали тот же самый эффект, что и кристаллы, которые предварительно выдерживались на свету. Кроме того, он отметил, что излучение не за висит от вида соединения урана, а зависит лишь от наличия урана в нем. Эти наблюдения показали что новый тип излучения является атомным явлением и не зависит от химического и физического состоя ния вещества. [c.383]

    Позже электроны были также обнаружены в излучении, которое возникает при радиоактивном распаде тяжелых атомов (уран, радий и др.). Было найдено, что поток электронов, вылетающих из атомов радиоактивных элементов, отклоняется подобно электрическому току от прямолинейного движения под влиянием магнитного и электрического полей. По величине таких отклонений нашли заряд и массу электрона. Последняя оказалась приблизительно в 1800 раз меньше массы атома водорода (равной около 9-10 г). [c.144]

    В 1896 г. французский физик А. Беккерель (1852— 1908) исследовал некоторые флюоресцирующие вещества, которые могли бы служить источниками проникающего излучения типа рентгеновского. Из множества изученных им веществ только соединения урана оказали воздействие на фотопленку, защищенную черной бумагой. Беккерель установил, что все соединения урана обладают способностью испускать лучи, по свойствам идентичные рентгеновским. В том же году Пьер Кюри и Мария Склодовская-Кюри приступили к детальному изучению открытого Беккерелем явления. Исследуя урановую руду в том же 1898 г., они сообщили об открытии нового элемента — полония. Несколько позже ими же был открыт еще один элемент — радий, который обладал радиоактивностью, во много раз большей, чем уран. Свойство веществ давать самопроизвольное излучение было названо радиоактивностью. [c.32]


    Возможность определения элемента по радиоактивности зависит от его удельной активности. Последняя связана с периодом полураспада. Например, уран с 7=4,5-10 лет имеет удельную активность 3-10 кюри/г иными словами, активностью в 1 кюри обладают 3 т этого изотопа урана . У короткоживущих изотопов при радиоактивности 1 кюри масса очень мала. Например, висмут 2 В1 с 7=19,7 мин при активности 1 кюри имеет массу всего 2,2-10 г. Это значит, что для радиоактивность — плохая метка и методы определения его по другим признакам оказываются более точными. Для элементов с такой высокой удельной активностью, как у 21 В1, самым чувствительным является метод определения их по радиоактивному излучению. В табл. 19.8 приведены некоторые дополнительные примеры. [c.588]

    Первое наблюдение радиоактивности является классическим примером случайного научного открытия. В 1896 г. Беккерель занимался исследованием свойств лучей, незадолго до того открытых Рентгеном. Беккерель заметил, что рентгеновские лучи и солнечный свет заставляют флуоресцировать некоторые минералы. Зная, что рентгеновские лучи вызывают почернение фотографической пластинки, даже если она завернута в светонепроницаемую бумагу, он заинтересовался, продолжает ли минерал после освещения солнечным светом испускать какое-то излучение, которое, подобно рентгеновским лучам, способно вызывать почернение фотопластинки. В один из пасмурных дней Беккерель был вынужден прервать свои опыты и положил рядом с фотографическими пластинками, завернутыми в светонепроницаемую бумагу, минерал, содержавший уран. На следующий день при проверке фотографических пластинок он обнаружил, что они почернели лишь из-за того, что находились рядом с этим минералом. Так была открыта радиоактивность. [c.62]

    Мария Кюри начала интенсивно исследовать радиоактивные вещества и в течение двух лет обнаружила два неизвестных ранее элемента—полоний и радий, которые обладают гораздо более сильной радиоактивностью, чем уран. Вскоре было установлено, что радиоактивное излучение состоит из лучей трех типов, которые можно различить по их поведению в магнитном и электрическом полях. Положительно заряженные лучи получили название альфа-лучей, отрицательно заряженные — название бета-лучей, а лучи третьего типа, нечувствительные к воздействию электрического и магнитного полей,—название гамма-лучей. [c.62]

    Уран, Вначале радиометром в штуфах определяют общую радиоактивность. Для этой цели пригодны приборы любой конструкции. При повышенной радиоактивности в образцах отыскивают зерна радиоактивного минерала методом радиографии или отпечатка. Для этого образец шлифуют и кладут в темноте гладкой поверхностью на эмульсию фотографической пленки. Радиоактивные излучения вызывают изменения в светочувствительной эмульсии. В результате после проявления пленки в местах контакта ее с радиоактивным минералом наблюдается почернение. Интенсивность почернения зависит от количества минерала и содержания в нем урана, а также от чувствительности пленки и времени экспозиции, которое колеблется от 4 до 15 сут. [c.143]

    Токсические вещества (бериллий, молибден, мышьяк, селен, стронций и др.), а также радиоактивные вещества (уран, радий и стронций-90) попадают в воду с промышленными стоками и в результате длительного соприкосновения воды с пластами почвы, содержащими соответствующие минеральные соли. Содержание этих веществ в воде лимитировано ГОСТ 2874—73. При наличии в воде нескольких токсических или радиоактивных веществ сумма концентраций или излучений, выраженная в долях концентраций, допустимых для каждого из них в отдельности, не должна превышать единицу  [c.196]

    Они открыли (1898 г.) в урановых рудах два новых и более мощных источника излучения, чем сам уран. Ими оказались радиоактивные элементы полоний и радий. Было найдено, что радий претерпевает многоступенчатый спонтанный распад, который заканчивается образованием стабильного свннца. Поскольку атомы свинца качественно отличаются от атомов радия, такое превращение элементов можно объяснить только тем, что атомы обоих элементов построены из одинаковых, более мелких, чем сами атомы, частиц. Это послужило основанием для глубокого теоретического и экспериментального изучения строения атома. [c.77]

    Некоторые элементы содержат естественные радиоактивные изотопы, и если их период полураспада велик, соответствующая радиоактивность пропорциональна количеству элемента, присутствующего в образце. Поэтому как метод количественного анализа для этих элементов можно использовать прямые измерения а- или у-излучения. Таким образом определяются следующие элементы франций, лютеций, калий, рений, рубидий, самарий, торий и уран. [c.114]

    Для радиометрического анализа природных объектов используются все три рода излучения альфа-, бета- и гамма-, а также измерение выделяемых изотопами радия радиоактивных эманаций . В природных образцах, содержащих уран и торий, присутствуют все продукты распада материнских изотопов. Если радиоактивное равновесие не нарушено, то число атомов, распадающихся [c.207]


    Транспортно-упаковочный комплект 12 сорбционной колонки предназначен для защиты от радиоактивного излучения при её транспортировке. Биологической защитой служит обеднённый уран толщиной 10 см. [c.527]

    Металлический отвальный уран применяется не только в атомной энергетике. Его можно использовать, что частично уже и происходит, как тяжелый металл с плотностью 19,3 г/см для защиты от ионизирующего излучения при изготовлении контейнеров для перевозки радиоактивных веществ, а также и для других технических целей. В частности, отвальный уран используют в военной технике с одной стороны, как компонент танковой брони, более эффективно противостоящей противотанковому оружию, с другой — для увеличения поражающей способности ракет, снарядов и бомб. [c.36]

    Роль окислительно-восстановительных реакций и, Ыр и Ри в технологии переработки ядерного горючего огромна. Современные промышленные методы извлечения Ри и Мр и регенерации и, методы их разделения и очистки от радиоактивных продуктов деления основаны на различии окислительно-восстановительных свойств этих элементов. Например, для очистки плутония от продуктов деления при экстракции трибутилфосфатом ((пурекс-процесс) плутоний необходимо стабилизировать в четырехвалентном состоянии с другой стороны, для отделения от урана плутоний должен быть переведен в неэкстрагируемую трехвалентную форму, в то время как уран должен оставаться в шестивалентном состоянии. При этом необходимо учитывать термодинамическую неустойчивость Ри (IV) в слабокислых растворах, особенно при повышенной температуре, возможные побочные процессы, связанные с окислительным действием среды (НМОз), влияние ионизирующего излучения и т. д. От правильного выбора восстановителя или окислителя и от условий проведения реакции зависит успешность той или другой технологической операции. [c.5]

    Ионизационный ток приблизительно прямо пропорционален содержанию урана в препарате. Зная содержание урана в эталоне, вычисляют содержание его в исследуемом образце. Если исследуемая руда содержит уран и торий, то при измерении можно оценить лишь общую радиоактивность, выражая ее в эквиваленте (по излучению) закиси-окиси урана. Для определения содержания каждого изотопа требуется применение других методов. [c.126]

    В большинстве реакторов делящимся материалом является уран, а графит или вода (обычная или тяжелая) применяются в качестве замедлителей [7]. Когда источником излучения является сам реактор, то препараты подвергают одновременному действию потока нейтронов и у-фотонов. Облучаемые вещества активируются нейтронами, что во многих случаях может привести к нежелательным эффектам. Поэтому если хотят избежать активации нейтронами, то в реакторе облучают материалы, содержащие элементы с низким сечением захвата нейтронов, или же соблюдают такие условия облучения, при которых возникающие радиоактивные изотопы имеют малые времена жизни. К таким материалам относятся соединения, состоящие из углерода, водорода, кислорода и азота. [c.368]

    Радиометрическое обогащение основано на разнице в способности минералов испускать, отражать шш поглощать радиоактивные излучения. В настоящее время известно более 20 методов радиометрического О. почти половину из них уже применяют в пром-сти или подготавливают к внедрению. С помощью радиометрич. методов, к-рые используют для предварит. О. и в качестве основной и доводочных обогатит, операций, обрабатывают руды черных, цветных, редких и благородных металлов, алмазные россыпи и мн. др. неметаллич. полезные ископаемые. На основе естеств. радиоактивности таким образом выделяют куски руды, содержащие уран. Искусств, радиоактивность м. б. создана у-облучением материала. Напр., при облучении обогащаемой бериллиевой руды вследствие ядерной р-ции возникает испускаемый куском руды поток нейтронов мощность его определяется содержанием Ве в этом куске независимо от того, какими минер, формами он представлен. [c.322]

    На процесс образования метана и других углеводородов в результате воздействия излучений радиоактивных элементов (урана, тория, радия, радио йивного изотопа калия и др.) на ОВ еще в 1930-х гг. обратил внимание В.А. Соколов. Черные тонкодисперсные глинистые отложения с повышенной концентрацией ОВ, как правило, обогащены и ураном. Это объясняется тем, что накопление ОВ в отложениях сопровождается возникновением восстановительной геохимической обстановки, необходимой для осаждения солей урана. Органическое вещество под воздействием радиоактивных излучений урана, радия и тория, испускающих у-лучи, способно распадаться с образованием Н2, СН4, СО2 и СО. В свою очередь, СО под действием у-лучей распадается на С и О. Углерод, соединяясь с Н2, дает СН4, а кислород расходуется на окисление различньк веществ. Опытным путем установлено, что метан может под радиоактивным воздействием полимеризироваться до этана и более сложных УВ. Чем богаче ураном осадочная порода, тем активнее происходит в ней преобразование ОВ в углеводороды. [c.46]

    В 1898 г. Мария Кюри-Складовская, великий польский физик и химик, работавшая вместе со своим мужем Пьером Кюри во Франции, обнаружила, что соединения тория испускают лучи, аналогичные лучам урана . Уже в то время стало ясно, что испускаемое ураном излучение не связано с его физико-химическим состоянием. Оно является характерным для данного элемента атомным свойством, которое супруги Кюри и предложили назвать радиоактивностью. [c.31]

    На заводе по переработке ядерного топлива тепловыделяющие элементы растворяют, затем извлекают, разделяют и очищают плутоний и уран, причем радиоактивные продукты деления получают в удобном для хранения виде. Некоторые из этих продуктов деления, например являющийся источником Т-излучения, используются для промышленных и медицинских целей, остальные же в течение многих лет хранятся в подземных хранилищах. Процессы, применяемые для регенерации ядерного топлива, более подробно описаны в гл. 7 и 8. На рис. 1. 12 приведен общий вид одного из заводов по регенерации ядерного топлива Комиссии по атомной энергии (КАЭ) США в Хэнфорде. [c.17]

    Открытие Р. датируется 1896, когда А. Беккерель обнаружил самопроизвольное испускание ураном ранее неизвестного вида проникающего излучения, названное Р. (от лат. radio — излучаю и a tivus — действенный). Вскоре Р. была обнаружена и для торпя, а в 1898 супруги М. и П. Кюри открыли в составе урановых руд два гораздо более мощных, чем сам уран, излучателя — новые радиоактивные элементы — полоний и радий. Работами Э. Резерфорда и вышеназванных франц. ученых в 1899—1900 было показано наличие трех видов излучения радиоактивных элементов — а-, - и у-лучей. Было установлено, что а-лучи, вернее а-частицы,— это двукратно положительно заряженные ионы гелия, -лучи, вернее -частицы,— это отрицательно заряженные электроны, а У Лучи — поток электромагнитного излучения, схожего с рентгеновскими лучами. В 1903 Э. Резерфорд и Ф. Содди указали, что испускание а-лучей приводит к превращению химич. элементов, папр. радия в радон. В 1913 К. Фаянс и Ф. Содди независимо сформулировали правило смещения прп радиоактивном распаде, согласно к-рому а-распад всегда приводит к возникновению изотопа элемента, смещенного на две клетки от исходного к началу периодич. системы (и имеющего на четыре единицы меньшее массовое число) -распад приводит к возникновению изотопа элемента, смещенного на одну клетку от исходного к концу периодич. системы (и притом с тем же массовым числом). Т. о., открытие и изучение Р. опровергло представление о неизменности атомов. [c.227]

    На рубеже XIX и XX веков было открыто явление радиоактивности. В 1896 году французский учёный Бекке-рель, исследуя действие солей урана на фотопластинку, обнаружил, что атомы урана непрерывно испускают лучи, которые по своим свойствам несколько напоминают лучи Рентгена. Изучением этого явления занялись французский учёный Пьер Кюри и его жена Мария Кюри-Складовская. В 1908 году они открыли новые эле.менты с таки.ми же свойствами как и уран,— полоний и радий,— и назвали наблюдаемое ими излучение радиоактивным, а уран, полоний и другие подобные им элементы — радиоактивными. В результате исследований учёных было установлено, что явление радиоактивности заключается в самопроизвольном распаде атомов радиоактивных элементов. [c.88]

    Радиоактивное излучение урана и тория весьма слабо, его трудно уловить. Изучая радиоактивность минералов урана, Кюри обнаружила, что ряд минералов с низким содержанием урана, например смоляная обманка, обладают большей интенсивностью излучения, чем чистый уран. Кюри пришла к выводу, что в этом минерале кроме урана содержится еще какой-то радиоактивный элемент. Поскольку она знала, что все компоненты, содержащиеся в смоляной обманке в заметных количествах, нерадиоактивны, то неизвестный элемент, содержание которого заведомо было весьма низким, должен был быть чрезвычайно радиоактивным . В течение 1898 г. Мария и Пьер Кюри переработали большое количество смоляной обманки, пытаясь обнаружить новый элемент. И в июле того же года этот новый элемент был найден. В честь родины Марии Кюри его назвали полонием. В декабре был открыт еще один элемент — радий. Радиоактивность радня оказалась чрезвычайно высокой интенсивность его излучения в 300 ООО раз больше, чем у урана. Содержание радия в руде весьма мало. Так, из одной тонны руды супругам Кюри удалось получить только около 0,1 г радия. [c.146]

    Атомное ядро может вступать в реакции и, следовательно, изменяться несколькими различными способами. Некоторые ядра неустойчивы и самопроизвольно испускают субатомные частицы и электромагнитное излучение. Такое самопроизвольное испускание частиц или излучения из атомного ядра называется радиоактивностью. Открытие этого явления Анри Беккерелем в 1896 г. описано в разд. 2.6, ч. 1. Изотопы, обладающие радиоактивностью, называются радиоактивными, или радиоизотопами. В качестве примера приведем уран-238, который самопроизвольно испускает альфа-лучи эти лучи представляют собой поток ядер гелия-4, называемьк альфа-частицами. Когда ядро урана 238 теряет альфа-частицу, оставшийся фрагмент ядра имеет атомный номер 90 и массовое число 234. Таким образом, он представляет собой не что иное, как ядро изотопа торий-234. Обсуждаемую реакцию можно описать следующим ядерным уравнением  [c.245]

    При восстановлении ядерного топлива уран отделяют от ядерных отходов и наполняют им новые топливные стержни. После этого возникает проблема, как избавиться от оставщихся продуктов деления. Главная трудность заключается в их хранении, так как продукты деления чрезвычайно радиоактивны. По имеющимся оценкам, для того чтобы их радиоактивность снизилась до уровня, приемлемого для биологической дозы излучения, продолжительность хранения продуктов деления должна достигать 20 периодов их полураспада. Одним из наиболее долгоживущих и опасных продуктов деления является стронций-90 с периодом полураспада 28,8 лет, и поэтому считается, что ядерные отходы должны храниться 600 лет. Если бы из них предварительно не удаляли плутоний-239 с периодом полураспада 24000 лет, то отходы нужно было бы хранить еще дольще. Однако удаление плутония-239 представляет интерес в связи с тем, что он тоже может использоваться как делящееся ядерное топливо. [c.272]

    Естественная радиоактивность. Явление радиоактивности было открыто в 1896 г. известным французским физиком АнриБек-керелем , который установил, что металлический уран, а также его минералы и соединения испускают невидимое излучение. Воздух по соседству с препаратами становится хорошим проводником электричества. Излучение вызывало почернение фотографической пластинки, завернутой в черную бумагу или закрытой непрозрачными предметами. Излучательная способность урансодержащего препарата не зависела от температуры, от его агрегатного состояния, а определялась только содержанием урана. Беккерель из этих наблюдений сделал заключение, что способностью к излучению обладают атомы урана. [c.393]

    В 1896 г, французский ученый Беккерель обнаружил, что уран обладает особым излучением, которое было названо радиоактивным. Радиоактивность — это самопроизвольный распад ядер атомов некоторых элементов, соировождающийся испусканием элементарных частиц и электромагнитных волн. Существует несколько видов радно-актвното распада. [c.45]

    Один из важнейших этапов в развитии наших представлений об атоме начался после открытия в 1896 г. французским физиком А. Беккерелем радиоактивности урановых солей. Было обнаружено, что уран и его соли самопроизвольно испускают лучи, обладающие большой проникающей способностью. Это новое явление заинтересовало многих ученых. Начались интенсивные исследования природы этого излучения. Вскоре крупнейший французский физик Мария Кюри показала, что радиоактивностью обладает и другой тяжалый элемент — торий. Затем были открыты и другие радиоактивные элементы. [c.14]

    Газ радон (Нп) является продуктом радиоактивного распада урана (У), элемента, присутствующего в оксидах (например, уранините — УОз) и в виде примеси в силикатах (например, цирконе — 2г3102) и фосфатах (например, апатите — Саб(Р04)з (ОН, Р, С1)) земной коры. Эти минералы часто встречаются в гранитных породах, но бывают также в других породах, осадках и почвах. Уран распадается до радия (Ра), который в свою очередь распадается до радона (Нп) (см. вставку 2.6). Изотоп 222рп существует всего несколько дней перед тем, как распадается, но если поверхностные породы и почвы проницаемы, то у этого газа есть время мигрировать в пещеры, рудники и здания. Здесь радон или продукты его радиоактивного распада может вдыхать человек. Первичные продукты его распада, изотопы полония Ро и вро, не газообразны и прилипают к частичкам в воздухе. Когда их вдыхают, они оседают в бронхах легких, где распадаются в конце концов до стабильных изотопов свинца (РЬ), испуская частицы а-излучения во всех направлениях (см. вставку 2.6), включая выстилающие бронхи клетки. Излучение вызывает мутацию клеток и в конце концов рак легких. Отметим, что в Британии радон, по оценкам, вызывает рак легких в одном случае из 20, гораздо более серьезной причиной является курение. [c.71]

    Уран, обедненный изотопом уран-235, имеет достаточно высокую плотность и коэффициент ослабления излучения. Единственный недостаток обедненного урана - это его слабая радиоактивность. Радиоактивность урана делает его непригодным для использования в качестве материала коллиматора при низких значениях интенсивности рабочих пучков излучения. Уран является лучшим материалом для экранирования и коллимирова-ния излучения иридия-192, цезия-137 и кобалъта-60 и рентгеновского излучения с энергией фотонов выше 400 кэВ. [c.110]

    На протяжении миллиардов лет развития планеты Земля абсолютно все живое и неживое на ней подвергается постоянному радиоактивному облучению от естественных источников радиации. Однако открьггие сущности физического явления радиоактивности, т. е. способности некоторых атомных ядер самопроизвольно превращаться в другие ядра с испусканием частиц, датируется только 1896 г., когда французский ученый А. Беккерель обнаружил испускание природным ураном неизвестного проникающего излучения. [c.3]

    По, содержанию натрия в ркеанах По рсадконакоплению По солнечно>1у излучению По температуре в, земной коре По радиоактивности -горных пород По отношению свинец/уран, в земной коре [c.993]

    Мария Склодовская-Кюри (1867—1934) начала тогда же систематическое изучение излучения Беккереля при помощи метода, основанного на применении электроскопа (рис. 38) она стремилась установить, обладают ли аналогичными свойствами какие-либо другие вещества, помимо урана эта работа была темой ее докторской диссертации. Она обнаружила, что природная урановая смолка (5фановая руда) обладает во много раз большей активностью, чем очищенная окись урана вместе со своим мужем — профессором Пьером Кюри (1859—1906) она начала разделять урановую смоляную руду на фракции и определять их активность. Выделенная ею фракция сульфида висмута была в 400 раз более активна, чем уран. Основываясь на том, что чистый сульфид висмута не обладает радиоактивностью, она [c.58]

    Беккерель в свою очередь продолжал изучать свойства открытого им излучения при этом он имел возможность пользоваться сильно радиоактивными препаратами, приготовляемыми супругами Кюри. В 1899 г. Беккерель показал, что излучение, испускаемое радием, расщепляется под действием магнита. В том же 1899 г. молодой новозеландский физик Эрнест Резерфорд, работавший под руководством Дж. Дж. Томсона в Кавендишской лаборатории в Кембрнднсе, установил, что излучение, испускаемое ураном, состоит по крайней мере из двух типов лучей, которые он назвал а (альфа)- и Р(бета)-излучением. Вскоре после этого французский исследователь П. Виллар сообщил, что существует также и третий вид излучения—у (гамма)-излучение. [c.59]

    Важными методами анализа на уран и другие радиоактивные элементы являются методы, основанные на измерении интенсивности радиоактивного излучения. Именно радиохимическими методами производят обычно качественное обнаружение урана в минералах, однако известны и химические реакции. Так, из новейших реакций на уран можно упомянуть реакции с хиналь-диновой кислотой, щелочной раствор которой образует с солями уранила золотистый осадок, не растворимый в кислотах, и с ализарин-сульфонатом, образующим темно-фиолетовые осадки с солями уранила [9912]. Рекомендуется также реакция с оксихинолином, выполняемая на фильтровальной бумаге в присутствии урана под действием паров аммиака спиртовый раствор оксихинолина дает с исследуемым раствором темно-коричневое пятно. Реакция довольно чувствительна (1 10000) и позволяет определять уран в присутствии элементов группы редких земель [420]. [c.381]

    В больщинстве природных образований, существующих долгое время, уран находится в радиоактивном равновесии со всеми продуктами его распада. Периоды полураспада и его дочерних продуктов, а также тип испускаемых ими излучений представлены в табл. 4. 5. В ней также указаны равновесные атомные доли продуктов распада. Подобные сведения для и его продуктов распада приведены во второй части этой таблицы. Поскольку составляет небольшую часть природного урана, продукты его распада не будут приниматься во внимание в настоящем обсуждении. Свежевыделенный уран представляет собой смесь и равного по активности количества [c.134]

    СВОИМ супругом, французским физиком Пьером Кюри, открыла в составе урановых руд два новых радиоактивных элемента, названных по ее предложению полонием (от латинского Polonia — Польша) и радием (от латинского radius — луч). Новые элементы оказались гораздо более мощными источниками радиоактивного излучения, чем уран и торий. [c.56]


Смотреть страницы где упоминается термин Уран, излучение радиоактивное: [c.58]    [c.11]    [c.94]    [c.282]    [c.806]    [c.348]    [c.225]    [c.470]    [c.253]   
Физическая и коллоидная химия (1960) -- [ c.18 ]




ПОИСК





Смотрите так же термины и статьи:

Радиоактивные излучения

Радиоактивный урана



© 2025 chem21.info Реклама на сайте