Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Деполимеризация полистирола, скорость реакции

    Хотя в работе Мадорского и Страуса [72] указывается, что в продуктах термической деструкции полистирола содержатся небольшие количества толуола, этилбензола и метилстирола, основными продуктами этой реакции являются, помимо мономера, димер, тример и тетрамер осколки цепей большего размера в продуктах деполимеризации не содержатся, несмотря на то что при температуре реакции должны были бы отгоняться и продукты более высокого молекулярного веса вплоть до октамера [56]. Эти результаты подтверждают, что летучие продукты реакции образуются только путем отщепления от концов цепи. Тем не менее при деполимеризации полистирола наблюдается максимум скорости реакции и уменьшение молекулярного веса, что указывает на статистическую природу процесса деструкции этого полимера. На основании того, что математический расчет и эксперимента.чьное определение скорости реакции и молекулярного веса дают совпадающие результаты, можно сделать вывод, что механизм процесса термической деполимеризации стирола может рассматриваться следующим образом инициирование происходит у концов цепей, а затем протекает расщепление полимерных радикалов с образованием мономера, а также внутримолекулярная передача цепи, приводящая к образованию димера, тримера и тетрамера, и межмолеку- [c.22]


    Такое полимеризационно-деполимеризационное равновесие, как любое термодинамическое равновесие, подчиняется уравнению изотермы реакции Л0= ДС -Ь/ Пп АГ, а К — к поскольку (R-I = [RM ]. Отсюда следует, что для любой концентрации мономера существует 7 , выше которой преобладает деполимеризация, а АЯ° (Д5 4 -Ь/ 1п 1М))- где ДЯ" и Д5 — разность стандартных энтальпий и энтропий образования мономера и полимера при Т , М — концентрация мономера в жидком состоянии. Чаще всего деполимеризация идет через свободные макрорадикалы, и необходимое условие деполимеризации — генерирование свободных радикалов и возникновение мак-рорадииалов со свободной валентностью на конце. Параллельно с деполимеризацией идут другие процессы передача цепи на полимер, отщепление боковой группы, рекомбинация и диспропорционирование двух макрорадикалов. Константа скорости отщепления мономера от концевого радикала к = ,, + q, где — энергия активации присоединения мономера к макрорадикалу д — теплота присоединения мономера к макрорадикалу q 90 кДж/моль (винилацетат) 78 (метилакрилат) 70 (стирол) 58 (метилметакрилат), 35 кДж/моль (а-метилстирол). С высоким выходом мономера деполиме-ризуются полиметилметакрилат, поли-а-метилстирол, полиметакрио-лонитрил, поливинилиденцианид, полистирол. Для чистого мономера [c.287]

    Несомненным доказательством преобладающей роли реакции деполимеризации по сравнению с другими реакциями при деструкции служит большое количество мономера, выделяющегося при пиролизе. Отсутствие заметных количеств мономера при глубоком пиролизе указывает на то, что основным механизмом деструкции в этом случае являются реакции передачи цепи. Весьма показательны в этом отношении данные табл. 2.2 [20]. Прн замене атома водорода у третичного атома углерода полистирола на дейтерий происходит резкое увеличение выхода мономера, что, очевидно, связано с меньшей скоростью отрыва дейтерия по сравнению со скоростью отрыва водорода (кинетический изотопный эффект) [21], так как прочность связей С—С главной цепи не меняется по сравнению с прочностью связей в недейтерированном полистироле. Еще большее увеличение выхода мономера наблюдается при переходе от полистирола к поли-а-ме-тилстиролу, у которого вообще нет связей водорода — третичный атом углерода. В то же время замещение водорода на дейтерий у р-углеродного атома полистирола, как и следовало ожидать, практически не влияет на выход мономера. Интересно отметить, что значения энергии активации пиролиза указанных по-листиролов одинаковы, но скорости разложения различаются значительно. Отсюда следует, что нредэкс-понеициальные множители брутто-констант пиролиза и соответственно стерические эффекты также различны. [c.43]


    Р и с. У1П-12. Применение теории Гордона (сплошная линия) к полученным Грасси и Керром значениям изменения скорости реакции при деполимеризации полистирола [55]. [c.40]

    О сходстве реакций деполимеризации полистирола и сополимеров метилметакрилата с акрилонитрилом уже упоминалось выше (раздел Б-2,г), причем было отмечено, что характер изменения скорости образования мономера наряду с быстрым снижением молекулярного веса полимера на начальных стадиях реакции является доказательством того, что в макромолекулах сначала происходят разрывы цепей, а затем уже осуществляется деполимеризация макрорадикалов. Грасси и Керр [92] подтвердили это предположение и для процесса термодеструкции полистирола, анализируя данные, характеризующие скорости образования мономера и разрыва цепей на начальных стадиях реакции. [c.43]

    На этом основании теплота реакции равна 230 кал/моль,что весьма близко к значению, полученному при сжигании. Теплота сгорания полистирола составляет 9.831 кал/г, а теплота сгорания стирола 10.041 кал/г. Отсюда теплота реакции равна 0.21 кал/г, что составляет 21.9 кал/моль. Исходя из этого, они приходят к выводу, что всегда наряду с процессом полимеризации идет также процесс деполимеризации, сводящийся к разрушению полимерных молекул. То обстоятельство, что обычно при низких температурах мы наблюдаем в основном процесс полимеризации, обусловливается сравнительно высокой энергией активации деполимеризации. Однако именно ввиду большой энергии активации скорость реакции деполимеризации имеет гораздо больший температурный коэффициент. Поэтому при высоких температурах скорость деполимеризации становится больше, чем скорость роста, и разрыв полимерных цепей является бол ее вероятным, чем соединение мономерных молекул. Ватинов, Кобеко и Ма- [c.102]

    Тепловое воздействие является одним из наиболее часто встречающихся эксплуатационных условий работы полимерных изделий, поэтому изучение закономерностей изменения структуры и свойств полимеров под тепловым воздействием имеет очень большое значение. Здесь мы рассмотрим действие чисто теплового фактора без участия кислорода, так как объединенное действие обоих факторов логичнее рассматривать при описании окисления полимеров. Тепловым воздействиям подвергаются, например, изделия из полимеров, используемые для работы при высокой температуре в различных аппаратах, где нет доступа кислорода. В зависимости от химического строения молекул в полимерах могут происходить разные изменения. Так, одни полимеры полностью деполимеризуются, т. е. разлагаются до мономера в других при длительном нагревании происходит случайный разрыв связей и образование устойчивых молекул пониженной молекулярной массы, а иногда отщепление низкомолекулярных продуктов за счет реакций боковых групп без существенного изменения исходной молекулярной массы. Такие воздействия приводят также к беспорядочному сшиванию макромолекул и образованию разветвленных и сшитых структур. Скорости как радикальной полимеризации, так и деполимеризации возрастают с температурой. Существует предельная температура, при которой скорости полимеризации и деполимеризации становятся равными. Это можно установить, например, из измерения вязкости растворов полистирола при полимеризации стирола и тепловой обработке полистирола. В какой-то момент значения вязкостей выравниваются, что говорит об одинаковой молекулярной массе продуктов полимеризации и деструкции (рис. 107). [c.181]

    Рис. 11, построенный по данным табл. 3, показывает, что это соотношение соблюдается для высокомолекулярных образцов, деполимеризующихся в результате термической реакции при 220°. Однако было найдено, что скорость деполимеризации при фотореакции, проведенной при строго определенных условиях при 163°, уменьшается только от 70 до 56% в час при увеличении молекулярного веса от 60 ООО до 900 ООО. Согласно уравнению (3), скорость реакции в этом случае должна была бы уменьшиться почти в 4 раза. Ниже будет показано, что значение k, при этой температуре сравнительно невелико. Это, очевидно, является следствием понижения скорости диффузии радикалов друг к другу в высоковязкой среде. Было установлено [13], что в интервале температур, при которых вязкость расплавленного полистирола велика, увеличение молекулярного веса от 86 ООО до 560 ООО может привести к повышению вязкости в 10 раз. Можно ожидать, что и в случае полиметилметакрилата изменение вязкости будет величиной того же порядка, вследствие чего значение может сильно уменьшаться при повышении молекулярного веса. Увеличение длины кинетической цепи будет почти точно компенсировать уменьшение скорости инициирования, в результате чего полная скорость почти не будет зависеть от молекулярного веса. С другой стороны, при 220° полимер представляет собой достаточно подвижную жидкость, и поэтому изменения вязкости, а следовательно, н k при изменении молекулярного веса будут сравнительно невелики. [c.43]


    Хотя данные о выходах мономера дают ценную качественную картину реакций деполимеризации различных полимеров, очевидно, что не только структурные факторы должны играть в процессах термодеструкции определенную роль. Из данных по характеристике скоростей процессов термодеструкции, приведенных в четвертой колонке обсуждаемой таблицы, видно, что они не всегда соответствуют результатам, которых можно было бы ожидать на основании выходов мономера. В соответствии с обсужденной выше теорией следовало ожидать, что максимальная скорость реакции должна наблюдаться нри образовании 20—30% летучих продуктов деструкции и низких выходах мономера. Но тогда возникает вопрос почему при термодеструкции полистирола максимальная скорость реакции наблюдается при превращении в летучие продукты 40% полимера и почему максимальная скорость реакции имеет место для а-заме-щенных нолистиролов при ожидаемой на основании теории степени превращения 25 %, тогда как при термодеструкции этих полимеров выходы мономера даже выше, чем при термодеструкции полистирола При термодеструкции таких полимеров, как полиэтилен и полипропилен, скорость реакции вообще не имеет максимума, несмотря на то что, судя по образующимся продуктам деструкции, в этих процессах преобладают реакции передачи цепи. С другой стороны, нри деструкции таких полимеров, как полиметакрилат и полиметакрилонитрил, которые на начальных стадиях термодеструкции образуют почти чистый мономер, очень быстро повышается их устойчивость к термическому разложению, и для дальнейшего превращения их в летучие продукты требуется применение гораздо более высоких температур, причем в этих условиях образуются отличные от мономера осколки полимерной цепи. [c.26]

    Впервые протекание Д. и существование равновесия полимеризация — деполимеризация было доказано в 1945 Месробианом и Тобольскил /при изучении фотолиза толуольных р-ров смесей стирола и полистирола при 100°С.7 В результате дальнейших исследований было показано, что 11 полимеризация и Д. могут быть вызваны одними и теми же методами инициирования 2) при проведении полимеризации при достаточно высоких темп-рах константа скорости роста цепи с повышением темп-ры начинает падать, стремясь к нулю 3) в нек-рых системах полимеризация протекает только до определенной глубины превращения мономера. Все это позволило высказать предположение, что полимеризация — обратимый процесс, при к-ром одновременно происходит как присоединение молекул мономера к активному центру, так и отщепление мономера от этого центра Направление реакции при данной темп-ре определяется, очевидно, термодинамич. характеристиками компонентов системы реакция будет протекать в направлении уменьшения свободной энергии, стремясь к равновесному состоянию, соответствующему минимуму свободной энергии. Скорости полимеризации и Д. будут определяться реакционной способностью активных центров, наличием или отсутствием стерич. затруднений, концентрацией реагентов и другими кинетич. факторами. [c.339]

    Вопрос об образовании в полистироле боковых метильных групп, возникших в результате аномальной реакции роста, неоднократно обсуждался [203]. Реакция роста обратима. Деполимеризация имеет более высокую энергию активации, чем полимеризация, таким образом, скорости обоих процессов становятся одинаковыми лишь при определенной предельной температуре ( eiling temperature) [204]. [c.32]


Смотреть страницы где упоминается термин Деполимеризация полистирола, скорость реакции: [c.41]    [c.165]    [c.246]    [c.650]    [c.77]    [c.342]   
Методы высокомолекулярной органической химии Т 1 Общие методы синтеза высокомолекулярных соединений (1953) -- [ c.494 ]




ПОИСК





Смотрите так же термины и статьи:

Деполимеризация

Реакция деполимеризации



© 2025 chem21.info Реклама на сайте