Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Характеристики компонентов системы и их изменений

    А. Характеристики компонентов системы и их изменений [c.70]

    Потери в кабельной линии рассчитываются исходя из скорости передачи, вероятности ошибки, характера сигнала, числа периферийных устройств и расстояния между ними, типов источника света и фотоприемника, потерь на вводе излучения при стыковке, числа соединений в линии и их характера (разъемные или неразъемные), допусков на температурные изменения и на ухудшение характеристик компонент системы во времени  [c.125]


    Эргономический анализ технологического оборудования и процессов предполагает детальное изучение всего разнообразия характеристик, которыми определяется состав и структура психофизиологической деятельности человека, особенности его взаимодействия с машиной и средой на материальном, энергетическом , информационном и других уровнях. Конечная цель эргономического изучения техники состоит в формировании ее математической модели (производственного процесса, ЧМС) с оценкой состава, структуры, свойств, характера их изменения и разностороннего согласования с требованием человека и других компонентов системы. [c.43]

    Точка 2. Система выше точки Г двухвариантна, т. е. для характеристики подобной системы необходимо фиксировать температуру и состав. В точке Г начинается кристаллизация вещества А. Выделение теплоты кристаллизации замедляет охлаждение системы. По мере увеличения количества твердого вещества А расплав обогащается веществом В, вследствие чего температура кристаллизации непрерывно понижается. Соотношение между количествами твердой и жидкой фаз определяется по правилу рычага. Поскольку с момента образования твердой фазы система стала одновариантной, то между температурой и составом насыщенных растворов будет существовать зависимость, которая, и выражается кривой АЕ. Следовательно, отмечая температуру начала кристаллизации, тем самым устанавливают состав наоборот, каждому составу отвечает единственная температура равновесия твердое вещество А — расплав. По достижении температуры эвтектики расплав будет насыщен обоими веществами появляется новая фаза — твердое вещество В, и система становится инвариантной. При температуре эвтектики оба вещества выпадают в соотношении, отвечающем составу оставшейся жидкости, поэтому жидкость кристаллизуется без изменения состава. Кристаллизация эвтектического расплава изменяет состав твердой массы, так как последняя пополняется не только веществом А, но и веществом В. При исчезновении последней капли жидкости состав твердой массы совпадает с составом исходного расплава. После этого температура начинает падать, так как с исчезновением жидкости система становится одновариантной. Для точки 2 показаны процесс охлаждения, по линии ликвидуса — изменение состава жидкой фазы, по линии солидуса — изменение состава твердой массы. Твердая масса состоит из двух фаз компонента А и компонента В. Для смеси 7 показан процесс нагревания. [c.229]


    Другая группа вопросов, рассмотренных в этой главе, связана с проявлением эффекта дальнодействия. В связи с этим были рассмотрены методы выявления микрогетерогенности твердой поверхности, локальных электрических нолей и активных центров, обладающих значительным дальнодействием. Дальнодействие поля поверхностных сил субстрата приводит к тому, что значительная по глубине область адгезива, примыкающая к поверхности субстрата, вовлекается в сферу действия поверхностных сил. Это обусловливает не только особенности адсорбции полимеров на твердых поверхностях, по и особенности структуры слоя адгезива, примыкающего к твердой поверхности. Подобный эффект (эффект дальнодействия) — явление достаточно широко распространенное, встречающееся при нанесении на подложки объектов различной природы. Но именно для полимеров эффект дальнодействия особенно ощутим, поскольку в полимерах, даже находящихся в растворе, существуют надмолекулярные образования значительных размеров (фибриллы, домены и т. п.). В этом случае модифицирующее влияние подложки простирается на значительную глубину. В слое полимера, примыкающем к твердой поверхности, происходят не только структурные преобразования — изменяются все физико-химические свойства этого модифицированного слоя. Изменение свойств (в том числе и физико-механических) модифицированного слоя отражается на адгезионной прочности, так как эта характеристика зависит не только от интенсивности молекулярного взаимодействия на границе раздела фаз, по и от механических свойств компонентов системы. Таким образом, рассмотренные выше процессы формирования молекулярного контакта оказывают определяющее влияние па прочность адгезионного соединения. [c.145]

    Большинство реакций, используемых в аналитической химии, сопровождается изменением теплосодержания системы. Химика чаще всего интересуют равновесные концентрации компонентов системы, а не изменение ее термических характеристик. Однако существует небольшое число аналитических методов, основанных на изменении теплосодержания системы при химических реакциях и фазовых превращениях. [c.58]

    До сих пор мы рассматривали ППЛ как чисто математическую возможность приближенного представления функции / в некотором ограниченном интервале изменения аргументов. Посмотрим теперь, какой физический смысл будут иметь величины типа х[, если мы примем ППЛ в случае функции f, представляющей собой зависимость заданной количественной характеристики системы или процесса от какого-то набора элементарных параметров, рассматриваемых в качестве аргументов типа Хг- Пусть / является макроскопической величиной, поддающейся экспериментальному измерению. Далее, пусть мы ничего не знаем относительно сущности, величин и числа элементарных параметров, но нам известен тот набор поддающихся контролю факторов, изменение которых влияет на величину Такими факторами могут быть температура, природа или состав растворителя (в более общей формулировке — природа компонентов системы и их концентраций), строение структурной единицы (заместителя) в молекулах определенного типа и т. д. Если изменение одного из таких факторов влияет на величину/, то оно должно быть неизбежно связано с изменениями значений некоторых элементарных параметров. Если эта будет одна и та же группа параметров независимо от значения остальных факторов, и соблюдается условие (П. 4), то с изменением данного фактора однозначно связано изменение величины типа x , являющейся функцией от элементарных параметров, связанных с данным фактором. При условии постоянства остальных факторов величина [ будет находиться в линейной зависимости отх. . [c.47]

    Выясним смысл и границы применения понятия химический потенциал , который в настоящее время широко используется для характеристики различного рода изменений в системах, а также равновесия. Внутренняя энергия системы, например растворов, изменяется при поглощении или выделении теплоты, при совершении работы и при изменении масс компонентов. Поэтому выражение (2) первого закона термодинамики следует расширить [c.60]

    Различные пути воздействия ингибиторов на коррозионный процесс проанализированы Л. И. Антроповым [1, 28, 33, 36]. На основании этого анализа, а также с учетом многочисленных сведений о характере влияния ингибиторов на коррозионный процесс механизм ингибирования можно считать установленным, если известно следующее благодаря действию каких факторов замедляется коррозионный процесс, а также частные катодная и анодная реакции в виде каких частиц принимает участие ингибитор в электродном процессе (состав, заряд) механизм и изотерма адсорбции ПАВ на данном металле соотношение между степенью торможения электрохимического процесса и степенью заполнения поверхности адсорбированным ингибитором возможность и результат взаимодействия частиц ПАВ между собой и другими компонентами системы в объеме раствора и на поверхности металла какую из стадий катодной и анодной реакций преимущественно замедляет ингибитор. Для более полной характеристики механизма ингибирования кислотной коррозии представляют интерес также сведения о влиянии температуры на защитное действие, о составе промежуточных продуктов, об изменении физико-механических свойств металлов под влиянием ингибированных сред, о кинетике адсорбции частиц ПАВ и т. д. Однако большинство работ, посвященных механизму действия ингибиторов, содержит лишь отдельные сведения из числа приведенных выше. Поэтому достоверно судить о механизме ингибирования часто бывает затруднительно. [c.26]


    В ходе развития стационарных культур, в особенности при разведении таких культур свежей средой, происходят значительные изменения свойств микроорганизмов. Как уже упоминалось, это было продемонстрировано для некоторых энтеробактерий [1, 11], но, вероятно, относится и ко всем прокариотам. В некотором смысле стадии развития стационарной культуры являются артефактом, зависящим от состава среды, а также возраста и состояния клеток инокулята однако во всех случаях эти стадии существенны при измерениях роста. Феномены, проявляющиеся на различных стадиях развития стационарной культуры, важны в экологических исследованиях, где особую роль играют условия окружающей среды, которые в значительной степени неконтролируемы. Ответ культуры на колебания естественных условий включает в себя также изменения клеточных характеристик [31, 34]. Так, например, при разведении стационарной культуры, растущей в богатой среде, происходит ускорение макромолекулярного синтеза. Вначале синтезируются компоненты системы биосинтеза белка — рибо- [c.445]

    Современные технические возможности позволяют проводить смешение термодинамически несовместимых полимеров и пластификаторов практически до уровня молекулярного перемешивания. Однако такие системы проявляют склонность к расслаиванию. С другой стороны, в процессе эксплуатации термодинамически совместимых, но плохо перемешанных полимеров и пластификаторов происходит дальнейшая диффузия и вследствие этого дальнейшее перемешивание ингредиентов. Характеристикой, определяющей пригодность полимерного материала для данных условий эксплуатации, является не термодинамическая совместимость компонентов, а динамика изменения эксплуатационных характеристик при переходе системы к равновесному (в условиях эксплуатации) состоянию. С этой точки зрения разделение систем на термодинамически совместимые и несовместимые не имеет большой практической ценности. При некоторых достаточно малых концентрациях пластификатора система полимер — низкомолекулярный пластификатор всегда термодинамически совместима. Если состав полимерной композиции определен так, что при выбранных соотношениях компонентов система термодинамически неустойчива, то это еще не означает, что система не пригодна для заданных условий эксплуатации. В этом случае важно оценить эксплуатационную устойчивость системы, определение которой было дано выше. [c.28]

    Композиционная неоднородность, помимо применения различных способов фракционирования в системах, чувствительных к изменению состава [16], может быть исследована с помощью ряда физических методов. Так, для сополимеров, компоненты которых различаются по своим физическим характеристикам (показателю преломления, плотности, спектрам поглощения) были предложены следующие методы измерения интенсивности рассеянного света в растворителях с различным показателем преломления [3] скоростной седиментации с одновременной регистрацией в ультрафиолетовой и видимой областях спектра [31] плотности [27]. [c.29]

    Геохимические характеристики вмещающих отложений налагают несомненный отпечаток на концентрацию в углеводородных газообразных системах углекислого газа — единственного их кислородсодержащего компонента, не считая водяного пара. Проведенное нами усреднение результатов анализа более чем 2600 образцов попутных нефтяных и свободных углеводородных газов всех нефтегазоносных провинций земного шара (по данным [422—427]) показало (табл. 3.2), что характер изменения содержания СОз в газах в зависимости от глубины залегания меняется в явной связи с возрастом продуктивных пластов. [c.84]

    Диаграммы связи химических реакций. Химическая активность компонентов ФХС приводит (при прочих равных условиях) к изменению ее энергетического состояния. Для характеристики энергетического состояния физико-химических систем применяются понятия термодинамических потенциалов [3—5]. В качестве термодинамического потенциала ФХС, в которой протекают химические реакции, удобно использовать свободную энергию Гиббса G. Например, для системы с одной химической реакцией при постоянных давлениях Р и температуре Т дифференциал свободной энергии Гиббса принимает вид [c.118]

    Протекание химических процессов в реальных условиях часто осложнено наличием таких факторов, как турбулентный характер течения реагирующих потоков и пространственная неоднородность состава реагирующей смеси и полей скоростей и температур. В настоящее время известно, что знание только средних значений таких флюктуирующих величин, как температура и концентрации реагирующих компонент, недостаточно дпя полного описания сложных процессов химического превращения в условиях неизотермичности и турбулентности даже в тех случаях, когда влиянием химической реакции на гидродинамические характеристики системы можно пренебречь [147]. Необходимость учета флюктуаций температуры и концентраций реагентов и их взаимных корреляций обусловлена тем, что средняя скорость элементарного акта химического превращения в условиях неизотермического турбулентного смешения реагирующих компонент не определяется в виде закона Аррениуса при средних значениях этих величин. Кроме того, наличие флюктуаций приводит к существенному изменению коэффициентов переноса, значения которых определяются в этих случаях не только свойствами реагирующих газов, но и свойствами самого течения [86, 97, 127]. [c.178]

    Высокие антидетонационные свойства метанола в сочетании с возможностью его производства из ненефтяного сырья позволяют рассматривать этот продукт в качестве перспективного высокооктанового компонента автомобильных бензинов, получивших название бензино-метанольных смесей. Оптимальная добавка метанола—от 5 до 20% при таких концентрациях бензино-спиртовая смесь характеризуется удовлетворительными эксплуатационными свойствами и дает заметный экономический эффект. Добавка метанола к бензину снижает теплоту сгорания топлива и стехиометрический коэффициент при незначительных изменениях теплоты сгорания топливовоздушной смеси. Вследствие изменения стехиометрических характеристик использование 15%-й добавки метанола (смесь М15) в стандартной системе питания ведет к обеднению топливовоздушной смеси примерно на 7%. В то же время при введении метанола повышается октановое число топлива (в среднем па 3—8 единиц для 15%-й добавки), что позволяет компенсировать ухудшение энергетических показателей за счет повышения степени сжатия. Одновременно метанол улучшает процесс сгорания топлива благодаря образованию радикалов, активизирующих цепные реакции окисления. Исследования горения бензино-метанольных смесей в одноцилиндровых двигателях со стандартной и послойной системами смесеобразования показали, что добавка метанола сокращает период задержки воспламенения и продолжительность сгорания топлива. При этом теплоотвод из зоны реакции снижается, а предел обеднения смеси расширяется и становится максимальным для чистого метанола. [c.155]

    Характеристики реакции теплообменника на изменение нагрузки часто оказывают существенное влияние на коэффициент полезного действия всей установки. Скорость, с которой установка может быть включена в работу или выключена или скорость изменения подачи энергии, может в значительной степени зависеть от характеристик теплообменных аппаратов [7, 8]. Как правило, в новых типах установок такого рода задачи невозможно решить до тех пор, пока установка не построена и не сдана в эксплуатацию. Во всех случаях, когда это возможно, желательно исследовать характеристики скорости реакции, необходимые не только в расчетной точке, но и во всем интервале нагрузок, для которого требуется точное регулирование. Особенно важно проведение такого исследования тогда, когда трудно добиться устойчивой работы системы. При этом должны быть рассмотрены эксплуатационные характеристики важнейших компонентов и контрольно-измерительного оборудования. [c.165]

    Полученная информация при этом позволит проследить за динамическим изменением основных компонентов и целостных систем, их функций, за развитием и усложнением ЧМС. Такое изучение в условиях научно-технического прогресса необходимо, так как известно, что если в структуре ЧМС одновременно реализованы все научно-технические достижения, человек оказывается для этой системы профессионально не состоятельным. Он не может, не готов выполнять в такой системе новую и непосильную для него управленческую, контролирующую функцию. Характеристики и требования такой системы значительно превосходят его реальные возможности. Исследовать, оценить и конкретизировать рассогласованность человеческого звена с другими компонентами в данном случае можно только на основе системного подхода, ири глубоком изучении интегральной функции системы и роли в ней человека. [c.154]

    Нефтяные дисперсные системы являются гетерогенными системами с высокоразвитыми поверхностями раздела фаз. В этой связи особое внимание при изучении нефтяных дисперсных систем уделяется поверхностным явлениям, в частности исследованию их структурно-механических свойств, обусловленных поведением компонентов нефтяных дисперсных систем на границе раздела фаз. С достаточной вероятностью предполагается, что ключевым вопросом в этих случаях является рассмотрение процессов сорбции-десорбции на межфазных поверхностях. С формированием межфазных слоев можно связать изменение качественных коллоидно-химических характеристик многих нефтяных сырьевых композиций, промежуточных и конечных товарных нефтепродуктов. [c.40]

    Повышение температуры способствует физическому разрушению агрегативных комбинаций до некоторых, соизмеримых с молекулярным уровнем минимальных размеров, обусловленных энергией связи структурных элементов агрегативных комбинаций. Дальнейшее разрушение образованных агрегативных комбинаций наименьших размеров (соизмеримых с молекулярным уровнем) возможно уже при более высоких температурах, приводящих к химическим превращениям компонентов агрегативных комбинаций и изменениям качественных характеристик системы в целом. В качестве примера можно привести процессы термообработки остаточных нефтяных фракций с целью изменения, в частности, их поверхностной активности, путем термохимической трансформации агрегативных комбинаций. [c.244]

    В различных условиях существования углеводородные системы, нефти, газовые конденсаты и продукты их переработки могут рассматриваться в виде многокомпонентных нефтяных дисперсных систем. Изменение термобарических условий приводит к превращениям инфраструктуры указанных систем, которые наиболее выражены в области фазовых переходов. При этом важнейшими параметрами, которые характеризуют систему на микроуровне, являются дисперсность, энергия межмолекулярных взаимодействий, размеры, конфигурация, поверхностная и объемная активность структурных образований, представляющих дисперсную фазу, степень их сольвати-рования компонентами дисперсионной среды. Изменение указанных параметров отражается на основных макрохарактеристиках системы, например плотности, вязкости, упругости пара, агрегативной и кинетической устойчивости. Причем, как правило, при отклике на внешние или внутренние возмущения на нефтяную дисперсную систему изменение этих характеристик сопровождается нелинейными и неаддитивными эффектами. Отклонения от аддитивности различных свойств нефтяных дисперсных систем в процессе их превращений характерны не только для смесей различных углеводородов, но могут проявляться даже в пределах одного гомологического ряда. [c.302]

    Взаимодействие белков с лигандами, как правило, существенно изменяет физико-химические характеристики компонентов системы наблюдаются изменения в спектрах поглощения и флуоресценции лиганда и белка, изменения спектров кругового дихроизма. В этом плане достаточное развитие получили хромофорные метки центров связывания. Перенос молекулы из водной сферы в сферу центра связывания сопровождается изменением сольвата-ционных взаимодействий переносимой молекулы. Кроме того, лиганды могут образовывать специфические комплексы, сопровождающиеся существенными изменениями спектральных характеристик, например комплексы с переносом заряда. Как правило, коэффициенты экстинкции этих комплексов достаточно высоки (10 —10 М" см ). Это позволяет хорошо спектрофотометрически детектировать их концентрации [c.213]

    Важнейшей ко шчественной характеристикой протекания химической реакции во времени является скорость реакции. Понятие скорости реакции характеризует количество вещества, вступающего в реакцию или образующегося в результате реакции в единицу времени. Для гомофазного химического процесса, идущего при постоянном объеме, скоростью процесса по некоторому компоненту называется изменение концентрации этого компонента в единицу времени. Если же в процессе реакции происходит изменение объема реагирующей системы, то концентрация вещества оказывается связанной в этом слз ае не только с числом актов химического превращения, но и с тем, по какому закону изменяется объем системы. В общем слзд1ае это изменение может осуществляться произвольным образом. Эти вопросы изложены в 20.1.2. [c.56]

    Каждый исследователь адсорбционных явлений прекрасно представляет себе, насколько сложны адсорбционные системы, насколько до сих пор еще мала информативность наших методов их исследования. Сказанное особенно справедливо в отношении адсорбции растворов, так как в этом случае изменения в адсорбционной системе являются результатом разности взаимодействий компонентов раствора с адсорбентом и между собой. Важность термодинамических жсследований определяется тем, что при исследовании адсорбции растворов в большинстве случаев оказываются непригодными современные физические методы 1тсследования поверхностных явлений и фактически единственными измеряемыми величинами являются изменения концентрации в системе, ее объема и теплосодержания. В задачу термодинамики адсорбции растворов входит установление связи между величинами и термодинамическими характеристиками адсорбционной системы.  [c.91]

    Введение в водные растворы посторонних, часто неэкстрагиру-ющихся, электролитов приводит к изменению активности компонентов системы, что отражается на характеристиках их межфаз-ного распределения. При этом возможно повышение значений коэффициентов распределения (высаливание) и их понижение (всаливание). Высаливающее действие оказывает также введение в водные растворы неэлектролитов. [c.23]

    Условия фазового равновесия зависят от физико-химической природы компонентов заданной смеси, температуры и давления. Последнее в процессах ректификации практически постоянно и выбирается по технологическим соображениям. Поэтому при заданном давлении условия равновесия между жидкостью и паром оказываются физико-химической характеристикой разделяемой системы и не могут быть изменены без введения в нее новых компонентов. Возможности изменения движущей силы процесса ректификации за счет изменения соотношения расходов материальных потоков также лимитируются технико-экономическими соображениями. Поэтому возможности интенсификации процессов разделения смесей с помощью обычной ректификации ограничиваются применением высокоинтенсивной аппаратуры и организацией оптимальной технологии разделения, обеспечивающей наиболее рацибналь-ную последовательность выделения отдельных компонентов или фракций из исходной многокомпонентной смеси. Необходимо также иметь в виду, что обычная ректификация, как правило, приме- [c.6]

    Величины Р, определенные этим методом, являются весьма приближенными и не точными для полимеров одинакового химического состава, но различных морфологических характеристик, а также когда компоненты системы проявляют специфические взаимодействия, т. е. величина Н (г, к) значительно отклоняется от единицы. В большинстве систем полимер — сорбируемое вещество диффузия и проницаемость в общем случае увеличиваются при близком сходстве химической природы компонентов. Так, например, скорость проникновения через полиэтилен минимальна для сильно полярных веществ и максимальна для углеводородов в такой после- довательности спирты, кислоты, нитропрои водные, альдегиды и кегоны, сложные эфиры, простые эфиры, углеводороды, га-лоидировзнные углеводороды. Химическая модификация полимера может резко влиять на величину В и Р. Введение метильных или полярных боковых групп в макромолекулу каучука увеличивает энергию когезии и уменьшает величины Р и но очень слабо влияет на растворимость Присутствие двойных связей в основной полимерной цепи способствует возрастанию коэффициента диффузии. Ауэрбах и сотрудники наблюдали трехкратное снижение величины коэффициента диффузии октадекана в полиизопрене по мере того, как остаточная ненасыщенность полимера уменьшалась путем гидрирования от 100 до 37%. Было няйьено. чго изменение молекулярного веса полимера оказывает незначительное влияние на скорости диффузии и проницаемости  [c.244]

    Способы изображения макро- и микроучастков диаграмм состояния. Свойства полупроводниковых фаз чрезвычайно чувствительны к исчезающе малым изменениям состава, проявляющимся во введении легирующей примеси или в нарушении стехиометрического соотношения компонентов химического соединения. Эта чувствительность достигает 10 —10 ат. %. Отсюда следует, что вблизи ординат компонентов и химического соединения масштаб по оси концентраций должен быть изменен в 10 —10 раз для того, чтобы можно было судить о характере фазовых превращений в очень узкой области концентраций. Это позволяет определять области твердых растворов и судить о протяженности области однородности полупроводниковой фазы. Таким образом, приходится иметь дело как с обычной макродиаграммой, которая дает общее представление о фазовых равновесиях в системе, так и с микроучастками этой же диаграммы, которые углубляют представления о термодинамических характеристиках фаз и компонентов системы. [c.230]

    В процессе развития химической диаграммы при переходе от систем с меньшим числом компонентов к системам с большим числом компонентов, в зависимости от протекающих физико-химических процессов в системе, происходят определенные преобразования, изменения и усложнения диаграммы. Однако общий строй диаграммы многокомпонентной системы всегда неразрывно связан с составляющими ее системами. Наиболее существенные признаки систем с малым числом компонентов в процессе усложнения состава передаются многокомпонентным системам, фазы простых систем сохраняются в более сложных системах с новыми геометрическими характеристиками, так как по мере увеличения числа компонентов системы повышается мерность координатного симплекса, увеличива- ется количество составляющих ее простых систем, среди них появляются фигуры более высокой мерности [1, 161]. [c.181]

    Для только что описанного процесса в равновесных условиях внутренняя жидкость имеет наиболее высокую концентрацию компонента 1, а внешняя — наиболее низкую. Поэтому можно проследить за достижением системой равновесного состояния, отбирая пробы внешней жидкости через определенные промежутки времени, в течение которых происходит изменение концентрации. Этот метод применялся Иглом и Скоттом [91 для получения кинетических характеристик систем с различными углеводородами и адсорбентами. С небольшими изменениями он был использован также для получения данных, приведенных в табл. 2 и 3 [34]. [c.148]

    Итак, химический процесс, в результате которого одни компоненты превращаются в другие, имеет ряд важных специфических особенностей. Во-первых, в результате реакции в самом общем случае может иметь место изменение числа объектов системы. Во-вторых, химическая реакция как типично диссипативный процесс является процессом неравновесным. В-третьих, сложная химическая реакция — процесс нелинейный, т. е. связь между функцией скорости и (с) и характеристиками процесса (коэффициентами скоростей, концентрациями и т. д.) нелинейна. Первая из упомянутых особенностей, как уже было показано введением независимой химической переменной или [X, учитывается достаточно просто и не требует специального рассмотрения. Здесь мы несколько подробнее рассмотрим две другие особенности химического процесса — неравновесность и нелинейность. [c.93]

    Поскольку скорости отдельных элементарных процессов важны пе сами по себе, а лишь на фоне скоростей всех элементарных процессов, то та или иная реакция может оказаться относительно медленной по одному из компонентов, принимающих в ней участие, и быстрой по другому компоненту. Таким образом, кинетическая характеристика оказывается лшогомерной это столбец Vjl i для реакции и матрица 17 1 для механизма процесса. С.педовательно, стадию нельзя однозначно охарактеризовать только одной кинетической долей, необходимо рассматривать все значения у . Кроме того, в системе обратимых реакций, описывающих генерацию и сток, суммарное изменение компонента может оказаться незначительным (малость знаменателк в (3.178)), в связи с чем оценка (3.178) оказывается неверной по существу. Наконец, эта оценка не нормирована, а модификация ее к виду [c.235]

    Таким образом, с увеличением времени несимметричные компоненты первоначального распределения фо (ж) (выраженные через синусы) уменьшаются более быстро, чем симметричные компоненты (содержащие косинусы). Из этого можно сделать следующий вывод неза1шспмо от начальной формы распределения потока в последующие моменты времени распределение становится все более симметричным, если, конечно, отсутствуют дальнейшие изменения в ядерных характеристиках системы. Этот результат является следствием предположения, что делящееся вещество равномерно распределено по всему объему размножающей сферы, т. е. 2, не зависит от X. Существует еще одно важное следствие, которое может быть выведено из выражения (5.119), а именно всегда существует один член ряда (5.119), который преобладает над другими, и с увеличением времени I этот член один дает все более точную аппроксимацию всего ряда. Докажем это путем следующих рассуждений рассмотрим величину которую запишем в форме [c.143]

    Условие инвариантности комбинаций удля упругих столкновений выполняется автоматически при любых максвелловских функциях fi. fj с произвольными нормировками. Формально можно считать, что смесь нереагирующих компонент является "химически равновесной", если функции распределения имеют максвелловский вид. Хотелось бы отметить, что такой подход имеет физический смысл, поскольку частицы с разной поступательной энергией вносят различный вклад в процессы установления равновесия. Кстати, именно на этом основана модель Ван-Чанга—Уленбека—де Бура, где вводится множественная система квантовых уровней, при которой фактически отсутствуют упругие столкновения и каждое столкновение приводит к изменению уровня. Частицы с неодинаковой кинетической энергией при этом обладают как бы различной химической активностью в процессах неупругого рассеяния. После расчета коэффициентов переноса в такой системе частицы на различных уровнях вновь считаются одинаковыми, и их концентрация находится простым суммированием. Такое объединение упругих и неупругих процессов позволило рассчитать характеристики переноса (сдвиговую и объемную вязкость, время релаксации) многоатомнь1х газов. В этой трактовке условие детального баланса представляет собой частный, вырожденный случай закона действующих масс (с условием,ДЕ= 0). [c.31]

    Система уравнений (П1.35), (П1.36) позволяет рассчитать частотные характеристики ректнфи( ационной колонны по каналам от возмущающих и управляющих воздействий к изменению концентраций легколетучего компонента в кубе колонны и в дистилляте. [c.129]

    Следствием дегазации нефти является не только изменение термодинамической стабильности через растворимость компонентов, но при этом изменяется также кинетическая стабильность нефти. При дегазации нефти из-за удаления наименее вязких низкомолекулярных компонентов происходит повышение вязкости и, как следствие, несущей способности дисперсионной среды, что приводит к росту кинетической стабильности системы в целом. Это обстоятельстьо оказывается особенно весомым при формировании отложений из движущегося потока. Было показано /24/, что нефти, имеющие вязкость более 0,2 Ст, не образуют парафиновые отложения при их транспортировке. Дегазация может сказаться на формировании отложений также через гидродинамическую характеристику потока, так как образующиеся пузырьки газа существенно могут повлиять на его турбулентность. [c.45]

    Из приведенной характеристики обратимых и необратимых систем видно, что только для первых из них равн определяется соотношением активностей Ъкисленной и восстановленной форм, согласно термодинамическому уравнению Нернста. Действительно, экспериментальные данные Петерса на примере системы показали строгое соблюдение этой зависимости в пределах изменения соотношения концентраций компонентов от 1 100 до 100 1. [c.16]


Смотреть страницы где упоминается термин Характеристики компонентов системы и их изменений: [c.88]    [c.468]    [c.260]    [c.244]    [c.245]    [c.47]    [c.307]    [c.6]    [c.395]    [c.345]    [c.114]    [c.239]   
Смотреть главы в:

Кинетика гетерогенных процессов -> Характеристики компонентов системы и их изменений




ПОИСК





Смотрите так же термины и статьи:

Компоненты системы



© 2024 chem21.info Реклама на сайте