Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Катализаторы процесса ароматизации

    Над хромовыми катализаторами процесс ароматизации в лабораторных условиях протекает при более высоких температурах— 535—510°, в то время как над молибденовыми — при температуре 505—470°. [c.299]

    Катализаторы процесса ароматизации [c.415]

    Катализатор процесса ароматизации должен удовлетворять ряду требований. Он должен не только обладать способностью ускорять реакции циклизации и дегидрирования, но также должен быть устойчив прп постоянной смене периодов работы в вос- [c.415]


    Таким образом, в процессе каталитического риформинга протекают реакции дегидрирования, циклизации, гидрирования, изомеризации и гидрокрекинга (с образованием газообразных продуктов). Термодинамические расчеты показывают, что любая из этих реакций возможна и преимущественное протекание одной из них будет определяться типом катализатора. Процесс ароматизации относится к числу эндотермических процессов (—ДЯ°298 = 335—485 кДж/моль), теплота реакции зависит от преобладающего направления взаимопревращений углеводородов. [c.64]

    Деструктивная гидрогенизация для получения чистых углеводо-родов. Получение нафталина из продуктов сухой перегонки угля не обеспечивает исключительной потребности в этом продукте. Первым шагом при решении этой проблемы было усовершенствование процессов ароматизации и высокотемпературного крекинга нефтяных фракций. Так, пиролизом керосиновой фракции в паровой фазе при 650 —700 °С в присутствии медных катализаторов получают фракцию, содержащую около 3% нафталина. [c.257]

    Замена драгоценного металла (платины) на более дешевые катализаторы привела к созданию установок с движущимся катализатором, позволяющим вести процесс ароматизации непрерывно (процесс гиперформинг и др.). [c.156]

    Процесс каталитического риформинга позволяет получать бензины с высокой детонационной стойкостью за счет ароматизации и частичной изомеризации углеводородов. При риформинге на платиновом катализаторе процесс платформинга можно вести в мягком (обычном) или жестком режиме. При жестком режиме сни- [c.162]

    Таким образом, с точки зрения повышения селективности ароматизации и снижения затрат на транспорт и регенерацию катализатора, процесс непрерывного риформинга целесообразно проводить при высоких значениях-объемной скорости и температуры. [c.150]

    Процесс ароматизации бензинов не является непрерывным из-за необходимости проводить периодическую регенерацию катализатора. Максимальная продолжительность рабочего периода катализатора составляет 180—200 час. Если сырье богато алканами, ароматизацию осуществляют при давлении 15 —20 атм, [c.157]

    Процесс ароматизации облегчается с увеличением молекулярного веса углеводорода. Так, в присутствии окиснохромового катализатора при температуре 465° С и весовой скорости 0,22 степень превращения составляла (в мас.%) [c.215]


    Изучение процесса ароматизации при атмосферном давлении на окисных катализаторах показало, что достаточная глубина ароматизации достигается при температуре не ниже 400—500 °С. В этих условиях алюмомолибденовый и алюмохромовый катализаторы не отравляются сернистыми соединениями и дегидроциклизация парафиновых и дегидрирование шестичленных нафтеновых углеводородов протекает достаточно глубоко. Реакций изомеризации парафиновых углеводородов почти не наблюдается. Однако процесс осложняется значительным коксообразованием, особенно в присутствии пятичленных нафтеновых углеводородов. Высокое коксообразование и сравнительно низкие качества получаемого бензина являются дополнительными причинами, лимитирующими применение каталитической ароматизации при атмосферном давлении в промышленных масштабах. [c.20]

    Тепловое регулирование процесса. В заводской практике каталитического риформинга бензинов технологический процесс в реакторных устройствах со стационарными катализаторами регулируют соответствующим изменением рабочих температур. Все последовательно включенные реакторы установок риформинга теплоизолированы, и температурный режим в каждом из них устанавливается близким к адиабатическому. Перепад температур в каждом последовательно действующем реакторе зависит от достигнутой в нем глубины процесса ароматизации и газообразования. [c.45]

    Основными критериями для оценки катализаторов служат объемная скорость подачи сырья, выход стабильного риформата (катализата), октановое число продукта или выход ароматических углеводородов, содержание легких фракций в риформате, выход и состав газа, срок службы катализатора. При анализе работы установок, а также при выборе оптимального режима каталитического риформинга надо иметь в виду следующее платина не только выполняет свои функции (дегидрирования-гидрирования), но и защищает прилежащие кислотные центры от закоксовывания, поэтому при низком ее содержании (менее 0,3%) катализатор быстро дезактивируется при недостаточных кислотных свойствах катализатора глубина ароматизации циклопентанов мала, и в катализате риформинга содержится много н-алканов, выход его велик, но октановое число невысокое при высоких кислотных свойствах катализатора парафиновые углеводороды в условиях риформинга изомеризуются настолько быстро, что уже в начальных стадиях процесса достигается равновесие парафины изопарафины и далее идет интенсивный гидрокрекинг. Кроме того, сильная кислотная функция ускоряет изомеризацию циклогексанов в циклопентаны, и реакция, идущая по схеме [c.140]

    Давно известно, что циклогексен легко образует циклогексан и бензол при кипячении с активным палладиевым катализатором /26/ , Аналогично протекают превращения гомологов циклогексена. Хорошо зарекомендовали себя катализаторы, содержащие 5% Рь, 5%Pd на активированном древесном угле, а также никель на кизельгуре. Интересно отметить, что циклоалкены способны гидрировать другие органические соединения за счет водорода, выделяющегося в процессе ароматизации, причем ненасыщенные циклические системы более эффективно выступают в роли доноров водорода, чем соответствующие циклогексаны, обсуждавшиеся выше. Для проведения такого сопряженного гидрирования достаточно простого кипячения раствора гидрируемого вещества в циклогексене в присутствии активного гидрирующего катализатора. Акцепторами [c.79]

    Развитие и совершенствование процесса риформинга шло в направлении разработки высокоактивных и высокоселективных катализаторов, которые позволили бы по возможности снизить давление в системе (препятствующее протеканию основных реакций), уменьшить долю побочных реакций гидрокрекинга и полнее вовлечь в процесс ароматизации парафиновые углеводороды. Важнейшим этапом развития каталитического риформинга явился переход от оксидных молибденовых к платиновым катализаторам. [c.58]

    Промышленное применение процесса ароматизации при атмосферном давлении сдерживалось большим отложением на катализаторе кокса и вследствие этого потерей активности катализатора. [c.94]

    В Советском Союзе разработано несколько типовых схем каталитического риформинга на платиновом катализаторе. Более ранние установки для получения высокооктанового бензина были спроектированы по двум вариантам если содержание серы в исходном бензине было менее 0,1%, блок гидроочистки отсутствовал И очистке от образующегося сероводорода подвергали циркулирующий водородсодержащий газ при содержании серы более 0,1% риформингу предшествовала гидроочистка. Кроме того, установки дифференцировали по рабочему давлению. Бензины, выкипающие в пределах 85—180 или 105—180 °С, а также фракцию 105—140 С, предназначенную для производства ксилолов, подвергали риформингу при 4,0 МПа, поскольку, с одной стороны, такое относительно тяжелое сырье более склонно к реакциям уплотнения, а с другой— легче подвергается целевому процессу ароматизации. Для фракций, предназначенных для получения бензола и толуола, использовали установку с давлением 2,0 МПа, потому что ароматизация легкого сырья более затруднена (требует давления, пониженного против первой схемы). [c.203]


    Кинетические исследования процесса ароматизации легких углеводородов осуществляли в изотермическом режиме на установке проточного типа. Катализатором для данного процесса являлся цеолитсодержащий катализатор ЦСК-5 ( с силикатным модулем, равным 40), модифицированный цинком методом пропитки по водопоглощению из раствора азотнокислого ципка с последующими сушкой и прокаливанием в токе воздуха при 600°С в течение 8 часов. [c.10]

    Новые цеолитсодержащие катализаторы процессов ароматизации алканов гюзволяют осуществлять переработку низкооктановых углеводородных фракций в высокооктановые компоненты автомобильных бензинов или концентрат ароматических углеводородов. [c.100]

    Катализатором процесса ароматизации являются нанесенные на оксид алюминия металлы VII-VIII группы (платина, палладий, иридий, рений) в определенном сочетании и общим количеством до 0,5-0,6% (мае.), это катализаторы марок КР-106, КР-108 и др. [c.445]

    Процесс ароматизации бензинов под давлением в присутствии водорода, являющийся эндотермическим, может оформляться в виде двух- пли трехколонных реакторов, заполненных катализатором. Реакционная смесь нагревается в нечи и поступает в первый реактор, [c.278]

    В дальнейшем для более глубокого понимания механизма дегидроциклизации алканов в присутствии оксидных катализаторов был использован [21] кинетический изотопный метод, с помощью которого удалось исключить из приведенной выше схемы ряд стадий (2, 3, 6, 10). Так, в опытах со смесями н-гексан — циклогексан- С удельная радиоактивность циклогексана не уменьшалась, т. е. из гексана не образуется нерадиоактивный циклогексан. Это означает, что последний не является промежуточным продуктом в процессе ароматизации н-гексана. В то же время в опытах со смесями гексан — гексен- С в катализате обнаружено заметное уменьшение мольной радиоактивности гексена, что, очевидно, вызвано разбавлением меченого олефина нерадиоактивным гексеном, образующимся при дегидрировании гексана. Полученный бензол обладал большей мольной радиоактивностью, чем непрореагировавший гексен, что говорит об образовании бензола через гексен [147]. Существенным фактом является появление в катализате меченых гексадиенов (из гемсена- С). Опыты по арома- [c.238]

    С. Декарбонилирование. В некоторых случаях необходимо удаление ил промежуточного продукта и процессе ароматизации функциональной группы такой, как альдегидная (—СНО) или спиртовая (—СНаОН). Образование бензола при пропускании бензилового спирта над нагретым никелевым катализатором известно давно [27] изучалось также разложение неароматических спиртов [1] и альдегидов [32] в углеводороды путем отщепления водорода, либо окиси углерода, либо того и другого. Если разлагаемый промежуточный продукт является циклогексильным или циклогексенильным производным, как непредельный альдегид, полученный в реакции Ди-пьса-Лльдера, то декарбоксилирование сопровождается, по-видимому, дегидрогенизацией с образованием аромч-тического углеводорода в одну стадию. Сырой продукт может содержать некоторое количество побочных продуктов, включая циклоолефины, которые повышают содержание ароматического углеводорода при его рециркуляции над дегидрирующим катализатором. [c.489]

    Сырье получают экстракцией (например, SO2) керосиновых фракций с высоким содержанием ароматических углеводородов или в результате процессов ароматизации и пиролиза. Гидродеалкилиро-вание проводят при 520—575 °С и парциальном давлении водорода 20 —60 ат применяют катализаторы на основе окиси хрома, никеля, молибдена, кобальта или железа, активированные щелочами. [c.258]

    В настоящее время большая часть установок каталитического риформинга работает на платиновом катализаторе процесс полу название платформинга [57—63]. В условиях платформинга пртеи / исходит значительная ароматизация бензиновых фракций, главньш образом, за счет дегидрирования нафтенов. Дегидрированию подвергаются не только шестичленные нафтены, но и пятичленные с боковыми цепями. В этом случае происходит вначале изомеризация пятичленных в шестичленные с последующим дегидрированием до [c.16]

    Mi.r детально разберем некоторые процессы второго частною случая этого раздела технологии нефтепереработки — процессы каталитического облаго-раиа1вапия бензинов термического крекинга и риф )])мннга с применением типичных гетерогенных катализаторов в таких условиях контакта катализатора и паров бензина, при которых исключается участие третьего заведомо введенного агента, например водорода, что наблюдаете,я при каталитическом гидрировании бензина либо в процессе ароматизации или гидроформинга. [c.74]

    Дегидроциклизация парафиновых углеводородов является наиболее трудной из реакций, ведущих к образованию ароматических углеводородов. Она включает сильно затрудненную молекулярную перестройку парафинового углеводорода в нафтеновый. В процессе риформирования парафиновых углеводородов сначала образуются пяти- и шестичленные нафтены, которые далее превращаются в ароматические углеводороды. В зависимости от числа углеродных атомов в образующемся г икле эти реакции получили соответственно название С5 или Сб-дегидроциклмзации. Образование пяти- и шестичленного цикла в процессе ароматизации парафиновых углеводородов зависит от строения исходного углеводорода, типа катализатора и условий процесса [c.137]

    В широко применяемых катализаторах риформинга платина нанесена на окись алюминия, обработанную галоидом (хлором или фтором), и юислотная активность катализатора определяется содержанием в нем этого галоида. При низкой кислотной активности катализатора глубина ароматизации циклопентанов мала и катализат риформинга содержит много нормальных парафинов, выход его велик, но октановое число невысокое. При высокой кислотной активности катализатора парафиновые углеводороды в условиях риформинга изомеризуются настолько быстро, что уже в начальных стадиях процесса достигается равновеоие парафины изопарафины и далее идет интенсивный гидрокрекинг. Кроме того, высокая кислотная активность приводит к ускорению изомеризации [c.253]

    Проведенное в ИНК АН РБ исследование процесса ароматизации углеводородов С2-С4 на цеол1ггном катализаторе позвол1шо разработать кинетическую модель процесса, включающую 26 основных стадий химических превращений и стадию образования кокса из непредельных углеводородов. [c.62]

    Эта схема подтверждена многими исследователями, использовавшими кинетический изотопный метод [95], метод меченых атомов [96] и др. Б. А. Казанский с сотр. [ 96] на импульсной микро-каталитической установке с радиохроматографическим анализом продуктов реакции, чтобы исключить или уменьшить вклад Сб-де-гидроциклизации в суммарный процесс ароматизации -гексана, проводили реакцию в токе гелия (Сз-дегидроциклизация протекает с заметной скоростью лишь в токе водорода). Чтобы понизить активность катализатора (применяли катализатор, содержащий 0,6% на окиси алюминия, зернение 0,25—0,5 мм) в реакции дегидроизомеризации пятичленных цикланов, его модифицировали азотнокислым натрием для подавления кислотных центров окиси алюминия. Работами Б. А. Казанского и др. это подтверждено и при изучении ароматизации парафинов на катализаторах, содержащих платину. [c.137]

    Окисление воздухом показывает, что стойкость полиметиленовых циклов ниже, чем у ароматических, и еще понижается с увеличением молекулярного веса за счет заместителей. Продуктами окисления являются кислоты и оксикислоты. Дегидрогенизация полиметиленовых углеводородов легко протекает с платиновым или палладиевым катализаторами. Предложено также много катализаторов смешанного типа, работающих при температурах более высоких, чем в случае платины, в результате чего, кроме продуктов дегидрирования, получаются в небольшом количестве ароматические углеводороды, образовавшиеся вследствие дегидроциклизации. Смешанный платиново-железный катализатор снижает роль реакций дегидроциклизации. Дегидрирование позволяет количественно перевести шестичленные полиметиленовые углеводороды в ароматические, причем, пятичленные изомеры, а также гемзамещенные остаются незатронутыми. Платиновый катализатор имеет значение не только в аналитической химии, но применяется также в заводских процессах ароматизации средних нефтяных фракций, превращающихся при температуре около 400° в смесь легких углеводородов, содержащих большое количество ароматических.  [c.87]

    Наиболее важными вариантами процесса ароматизации являются процессы, протекающие на платиновых катализаторах, например платфор-минг. Для получения бензола используют фракцию прямой перегонки нефти, выкипающую в пределах 65—85°, для толуола — в пределах 85—120° [c.11]

    Соноставлёние процессов ароматизации на металлических катализаторах под атмосферным и повышенным давлением позволяет сделать следую-ш ее обш ее заключение. При атмосферном давлении и температурах 300— 310° протекают в основном реакции дегидрирования шестичленных нафтеновых углеводородов (особенно на никелевом катализаторе). Реакции де-гидроизомеризации пятичленных нафтеновых, дегидроциклизации и изомеризации парафиновых углеводородов протекают медленно, глубина их редко превышает 5—10%. Стимулирование этих важных в практическом отношении направлений реакций повышением температуры вызывает коксо-образование и быструю дезактивацию катализатора. Эти затруднения можно устранить повышением давления при этом достигаются более высокие выходы целевых ароматических углеводородов и высокие октановые числа бензинов. [c.99]

    Технологический режим работы установок каталитического риформинга зависит от группового химического состава сырья. Неравномерное распределение катализатора по реакторам учитывает практически полное первоочередное дегидрирование нафтенов и последующий, менее селективный процесс ароматизации. Это же обстоятельство учитывается и применяемой иногда разной кратностью циркуляции вoдopoдqoдepжaщeгo газа меньшей в первых реакторах и повышенной в последующих. [c.314]

    Сложность процесса становится совершенно очевидной, если рассмотреть характер многочисленных последовательных реакций, промотируемых обеими функциями катализатора. При ароматизации метилциклоиентана, вероятно, сначала образуется метилциклонентен (дегидрирующая функция), который затем превращается в циклогексен (изомеризующая функция), дегидрирующийся, наконец, в бензол (дегидрирующая функция). Возникает вопрос, совмещены ли обе функции в одном и том же адсорбирующем центре или в одном и том же активном центре катализатора. Экспериментально было показано [37, 73], что уже простое механическое смешение обеих функций позволяет превратить метилциклопентан в бензол. При применявшихся условиях опытов [37] смесь платины на кремнеземе (дегидрирующая функция) с чистым кремнеземом (изомеризующая функция отсутствует) давала весьма небольшой выход бензола. При замене же кремнезема алюмосиликатом (изомеризующая функция) получались высокие выходы бензола. [c.186]

    В первой главе рассматриваются возможности использования цеолитов семейства пентасила для процесса ароматизации низкомолекулярных углеводородов, а также природа активных центров цеолитов данного типа. Показана эффективность применения пентасилсодержащих катализаторов в технологических процессах переработки низкомолекулярных углеводородов. Отмечено, что Б присутствии нового класса гетерогенных катализаторов - модифицированных высокомодульных цеолитов - ннзкомолекулярные углеводороды можно превращать в смесь ароматических углеводородов Сб-Сю. [c.6]

    На рис. 11 представлена принципиальная технологическая схема процесса ароматизации низкомолекулярных углеводородов на модифицированном цинком пентасилсодержащем катализаторе. [c.15]

    Белоусова О.Ю., Ахметов А.Ф., Кутепов Б.И. Кинетическая модель процесса ароматизации алифатических углеводородов СЗ-С4 на пенгасилсодер-жащих катализаторах //Теория и практика массообменных процессов химической технологии Материалы Всероссийской научной конферешрш. - Уфа, 1996.- .151. [c.20]

    Белоусова О.Ю., Ахметов А.Ф., Балаев АБ. Моделирование сменноциклического процесса ароматизации в полочном реакторе с неподвижным слоем катализатора // Методы кибернетики химико-технологических процессов Материалы 5-й Международной научной конференции. - Уфа, 1999. -С.62 [c.20]


Смотреть страницы где упоминается термин Катализаторы процесса ароматизации: [c.33]    [c.92]    [c.263]    [c.130]    [c.5]    [c.18]    [c.20]    [c.20]   
Смотреть главы в:

Химия и технология искусственного жидкого топлива и газа Издание 2 -> Катализаторы процесса ароматизации




ПОИСК





Смотрите так же термины и статьи:

Ароматизация

Ароматизация, катализаторы для



© 2025 chem21.info Реклама на сайте