Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина на носителях отравление

    Метод каталитического обезвреживания газообразных отходов заключается в проведении окислительно-восстановительных процессов при температуре 75—500°С на поверхности катализаторов. В качестве носителей металлов, используемых как катализаторы (платина, палладий, осмий, медь, никель, кобальт, цинк, хром, ванадий, марганец), применяются асбест, керамика, силикагель, пемза, оксид алюминия и др. На эффективность процесса оказывает влияние начальная концентрация обезвреживаемого соединения, степень запыленности газов, температура, время контакта и качество катализатора. Наиболее целесообразное использование метода— при обезвреживании газов с концентрацией соединений не более 10—50 г/м . На низкотемпературных катализаторах при избытке кислорода и температуре 200—300°С окисление ряда низко-кипящих органических соединений (метан, этан, пропилен, этилен, ацетилен, бутан и др.) протекает нацело до СО2, N2 и Н2О. В то же время обезвреживание высококипящих или высокомолекулярных органических соединений данным методом осуществить невозможно из-за неполного окисления и забивки этими соединениями поверхности катализатора. Так же невозможно применение катализаторов для обезвреживания элементорганических соединений из-за отравления катализатора НС1, НР, 502 и др. Метод используется для очистки газов от N0 -f N02 с применением в качестве восстановителей метана, водорода, аммиака, угарного газа. Срок службы катализаторов 1—3 года. Несмотря на большие преимущества перед другими способами очистки газов метод каталитического обезвреживания имеет ограниченное применение [5.52, 5 54 5.62] [c.500]


    Показано [57—62], что кокс может блокировать и металлические, и кислотные центры катализатора. По данным [54], в процессе риформинга на алюмоплатиновых катализаторах кокс блокирует в первую очередь платину и затем, в небольшой степени, кислотные центры носителя. Некоторые авторы использовали методику избирательного отравления различных активных центров сернистыми и азотистыми соединениями [53]. После отравления катализатор испытывали в реакции дегидрирования циклогексана. Авторы пришли к выводу, что закоксовыванию подвергаются и металлические, и кислотные центры катализатора. [c.39]

    Регенерацию [Металлических контактов и, в частности, никелевого, производят промывкой щелочами, спиртом, кислотами и другими растворителями [59, 60]. Полную регенерацию отработанного катализатора осуществляют переплавкой. При этом органические примеси выгорают, а над расплавом собирается шлак, содержащий NiO и АЬОз [59, 61]. Необратимо отравленные платиновые катализаторы на силикатном носителе, серебряные на пемзе, ванадиевые массы БАВ и СВД регенерируют извлечением из них платины, серебра и ванадия кислотами или щелочами с последующим использованием металлов. [c.69]

    В случае переработки нефтяных фракций при атмосферном давлении активность платиновых катализаторов быстро снижается. Это обусловлено не только образованием углистых отложений на поверхности катализаторов, но и присутствием в сырье сернистых соединений, которые являются для платиновых катализаторов специфическим ядом [1, 20—22]. Установлено, что характер отравления катализатора не зависит от строения сернистого соединения. Для подавления активности катализаторов на 70—80% достаточно 6—7 вес. % серы от количества платины, нанесенной на носитель. [c.19]

    По имеющимся данным [8, 9], ресурс работы электродной группы составляет пока около 10 000 ч. Экономические оценки показывают, что необходимо по крайней мере четырехкратное увеличение ресурса работы, для того чтобы электростанции на топливных элементах могли конкурировать с тепловыми электростанциями. Это ставит серьезные проблемы по стабилизации активности углеродных материалов, промотированных платиной. Снижение активности происходит вследствие рекристаллизации, растворения и отравления. При длительных сроках эксплуатации становится заметной коррозия носителя — углеродного материала. [c.9]

    По сравнению с непосредственно отложенной на металле-носителе платиной пленка является более активным катализатором окисления, имеющим большую продолжительность жизни и менее подверженным отравлению. [c.865]


    Предложено промотировать платиновый на носителе катализатор добавлением серебра, распределенного в жидкости, а не в виде сплава с платиной [315]. Установлено, что катализатор Pd/ отравляется Си — солями [316]. Повышенной устойчивостью к отравлению сернистыми соединениями обладает Ni-катализатор, содержащий карбонаты Zn и Са [317]. [c.1782]

    Катализатором служила платина на диатомите, силикагеле и пористом стекле. Количество металла на носителе составляло 1,3—5%. Так как возможно отравление катализатора в ходе работы, то осуществляется периодический контроль за его активностью по реакции гидрогенизации — дегидрогенизации бензола-циклогексана [8]. [c.102]

    Итак, увеличение содержания азотистых соединений в сырье ухудшает показатели риформинга. Чувствительность алюмоплатиновых катализаторов к азоту зависит от свойств носителя и степени диспергирования платины на носителе. Изменяя, на- 1 пример, способ пропитки но-сителя, можно изменять чувствительность катализатора к отравлению азотом в желаемом направлении. [c.177]

    Сернокислый магний в качестве носителя платины применяли в системе с несовершенной очисткой газа, что приводило к сравнительно быстрому отравлению катализатора. Растворимость носителя в воде являлась поэтому большим преимуществом, так как позволяла легко извлекать платину из отработанной контактной массы и переносить ее после очистки на свежий носитель. [c.401]

    Наилучшие результаты при гидрировании бензольного пли пиридинового ядра дают родий на угле (или оксиде алюминия) и оксид платины. Оба катализатора эффективны при низких температурах (50—80°С) и давлениях (2—3 атм). Восстановление на Р10г проводят в кислой среде [схема (7.59)], что является недостатком в случае гидрирования анилинов и пиридинов (например, возможно образование нерастворимых четвертичных аммониевых солей). Родиевые катализаторы на носителях склонны к ингибированию сильными азотсодержаш,ими донорами в этих случаях Р10г или Р(1 на носителе при высоких температурах (70—100°С) и давлениях (70—100 атм) менее подвержены отравлению и часто оказываются эффективными. Поскольку ароматическое кольцо медленно гидрируется в присутствии палладия в кислых средах, палладиевые катализаторы можно применять для частичного восстановления, однако при этом обычно необходимо высокое давление. [c.275]

    Вещества, устойчивые к образованию сульфидов в объеме в лрисутствии НаЗ (10—1000 млн ), могут быть отравлены в ре-зз льтате поверхностной сульфидации. Этот вид отравления изучен недостаточно. Ничего не известно о том, может ли частичное отравление поверхности вызвать общую дезактивацию металла. Разработка катализаторов, обладающих общей стойкостью к отравлению серой, требует долгосрочных исследований в нескольких областях. Первая из них должна касаться химии образования поверхностных сульфидов (возможный метод исследования — электронная спектроскопия), вторая — сильных взаимодействий, включающих активный металл, например никель, и носитель или другое вещество, как средства для улучшения их стойкости к отравлению серой. Если это взаимодействие приводит к образованию соединения, то можно ожидать снижения активности, но оно может быть скомпенсировано нечувствительностью к сере и возможностью работы при высокой температуре. Одним из интересных взаимодействий является изъятие цеолитовыми носителями электронов из металлов группы платины, приводящее к улучшению стойкости к отравлению серой. Достойным внимания является применение этого эффекта к катализаторам метанирования. [c.238]

    Не только магнитные, но и каталитические свойства разбавленных атомизированных слоев металлических катализаторов на дисперсных носителях Существенно определяются электронной структурой атома — его местом в периодической системе Менделеева и наличием холостых электронов. Роль электронного строения атомов в разведенных слоях особенно отчетливо проявляется при катализе смешанными слоями и в явлении спинового отравления , найденного Зубовичем [53]. При этом адсорбционные катализаторы, содержащие весьма каталитически активные атомы с неспаренными электронами, например атомы серебра, начинают сильно снижать (иногда почти до нуля) каталитическую способность других также весьма активных атомов с неспаренными электронами, например Р1. Этот вид взаимного отравления в результате спаривания электронов контрастно проявляется в смешанных слоях серебра с платиной и палладием при распаде перекиси водорода. Также действуют атомы меди, обладающие одним неспаренным электроном, но ионы меди, лишенные этого электрона, почти не оказывают токсического действия. Резкий провал парамагнитизма слоя в области отравления и его рост в области активации экапериментально демонстрирует определяющую роль спин-валентности в катализе. [c.27]


    Свойства изолированных атомов металлов изучены мало [11, 48—50]. При атомарной дисперсности платина обладает большей устойчивостью к отравлению серой [11]. Атомы палладия, полученные восстановлением цеолита Рё-НМа водородом при 25° С, не хемосорбируют ни водород, ни кислород [49, 50], и в этом отношении они резко отличаются от массивного металла и частиц Рс1 на различных носителях. Другой важный результат — сильное воздействие твердого тела на электронное состояние палладия. Атомы Рс1° ло-ка лизованы в цеолите вблизи льюисовских кислотных центров, которые оттягивают к себе их 4i/-элeктpoны [5] в результате этого некоторая часть атомов Рс1° превращается в ионы Рё , обнаруженные методом ЭПР [49]. Электронодефицитное состояние маленьких кластеров платины в цеолитах, содержащих двух- и трехзарядные катионы, отметили Далла Бетта и Будар [48]. По их мнению, под воздействием электрофильных носителей электронная конфигурация платины становится похожей на конфигурацию иридия, и соответствующие катализаторы проявляют повышенную активность в гидрировании этилена (табл. 10-3).  [c.173]

    Углеродный носитель оказывает существенное влияние на поведение платинового катализатора. Прежде всего следует отметить стабилизирующее действие высокодисперсной углеродной подложки на платиновый осадок, скорость уменьшения поверхности которого значительно меньше, чем в случае платиновой черни [92]. Циклирование электродов из промотированной сажи или угля в интервале потенциалов адсорбции водорода и кислорода ускоряет процесс снижения поверхности во времени [92]. При этом морфология осадка изменяется незначительно, о чем свидетельствует сохранение отношения высот пиков нрочно-и слабосвязанного адсорбированного водорода. Специальные исследования показали [18, 91], что уменьшение поверхности платины не связано с ее отравлением или растворением с переходом в объем раствора. Снижение поверхности проявляется в уменьшении числа кристаллитов платины малого размера и роста за их счет более крупных кристаллов. [c.188]

    При оценке электрохимической стабильности углеродных материалов, промотированных платиной, следует учитывать коррозионное поведение высокодисперсного углеродного носителя. Коррозия углеродного носителя может приводить не только к разрушению катализатора, но и к отравлению высокодисперсной платины продуктами коррозии. При увеличении аноднога [c.188]

    Число опубликованных к настоящему времени работ по использованию газовой хроматографии при изучении хемосорбции сравнительно невелико. Кремер и Розелиус [59, 60] впервые исследовали влияние отравления платинового катализатора сероводородом на время удерживания водорода колонкой, заполненной катализатором. Для определения удельной поверхности платины в гидрирующих катализаторах применялся метод предварительного окисления с последующим восстановлением металлической поверхности дозированным количеством На [61]. Для измерения изобар водорода на никелевых катализаторах был использован фронтальный метод [62]. Пример использования импульсной хроматографической методики при измерении хемосорбции водорода и СО на катализаторе Р1 (0,5%) на 7-А120з приведен в работах [19, 63]. На рис. 111.25 представлена серия хроматограмм, полученная в результате ввода девяти последовательных доз (по 0,6 см НТД) водорода в каталитическую колонку, заполненную 8 г указанного катализатора. Размеры колонки 90 X 0,4 см, скорость потока газа-носителя 5 см /мин. Температура реактора 50° С. Суммарное количество поглощенного Нд — около 2 сл , причем это количество не зависит от объема отдельных доз. Поглощенный водород хемосорбирован прочно и практически не десорбируется при многочасовой продувке аргоном. Десорбция поглощенного На не происходит и при нагреве д 400° С — предварительно насыщенный водородом катализатор не приобретает способности поглощать водород при длительном его нагреве в токе аргона. [c.135]

    Отравление металлических и неметаллических, главным образом оксидных, катализаторов было рассмотрено в разделах 2.1.1 и 2.1,2. Многие катализаторы являются по своей природе смешанными, поскольку представляют собой очень маленькие жристаллиты металла на носителе с развитой поверхностью. В качестве носителей обычно используют чистые оксиды. Кроме увеличения поверхности катализатора роль носителя сводится к стабилизации металла в мелкодисперсном состоянии. В большинстве случаев носитель инертен по отношению к компонентам реакционной смеси. В других реакциях он, наоборот, активен в некоторых каталитических превращениях. Примером такого бифункционального катализатора являются катализаторы платформинга [2.10, 2.11]. Такие катализаторы содержат обычно от 0,3 до 1% (масс.) платины на у- или т]-оксиде алюминия. Составляющие процесс платформинга реакции дегидрирования и [c.27]

    Уточняется механизм изомеризации и дегидроциклизации парафиновых углеводородов в условиях каталитического риформинга на основе подробного кинетического анализа экспериментальных данных, полученных ранее различными авторами. Показано, что гидрокрекингу подвергается вторичный ион карбония, образованный изоолефипом, а не первичный, как это предполагалось Миллсом с сотрудниками. Установленная автором схема реакции позволяет сделать практические рекомендации по повышению избирательности процесса в желаемом направлении за счет селективного отравления или подбора носителя для платины. [c.223]


Смотреть страницы где упоминается термин Платина на носителях отравление: [c.164]    [c.431]    [c.472]    [c.863]    [c.830]    [c.446]    [c.236]    [c.553]    [c.479]    [c.30]    [c.165]    [c.29]   
Гетерогенный катализ в органической химии (1962) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Платина на носителях



© 2025 chem21.info Реклама на сайте