Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Роль поверхности и пористости катализатора

    Вулканическая деятельность во всех ее проявлениях играла в этом отношении выдающуюся роль. Обогащая обширные зоны поверхности, в том числе и те, которые граничили с водоемами, соединениями металлов, вулканы способствовали развитию каталитических реакций. Вещества, выбрасываемые во время извержений, получаются в активном состоянии это, например, оксид кремния (IV) в форме высокопористой массы —пемзы, образующейся при застывании кислых лав (ее пористость достигает 80%) и др. Другой важной породой, которая могла функционировать и как адсорбент, фиксирующий на своей поверхности разнообразные частицы, и как катализатор, является глина. Глины относят к числу древнейших пород. Глинистые минералы (например, монтмориллонит) имеют пластинчатое строение силикатные слои, максимальное расстояние между которыми равно приблизительно 1,4 нм, разделены слоями молекул воды толщина этих слоев может изменяться в широких пределах. Глины обратимо связывают катионы и таким образом могут служить в качестве регулятора солевого состава окружающей водной среды. Скопление органических веществ на поверхности глинистых минералов, возможно, сыграло решающую роль в появлении предбиологических структур и возникновении жизни (Д. Бернал). По Акабори, из формальдегида, аммиака и циановодорода в абиогенную эру образовался амино-ацетонитрил, который подвергался гидролизу и полимеризации на поверхности глин, образуя вещества, близкие к белкам. Акабори показал, что нагревание аминоацетонитрила с кислой глиной ведет к появлению продукта, дающего биуретовую реакцию (реакция на белок). Твердые карбонаты, которые входят в большом количестве в состав земной коры, вероятно, катализировали процесс образования углеводов. Гидроксид кальция также может служить катализатором в таких процессах. Исходным веществом для синтеза углеводов служит формальдегид. Прямым опытом доказано (Г. Эйлер и А. Эйлер), что гликолевый альдегид и пентозы получаются из формальдегида в присутствии карбоната кальция. Схему образования углеводов из простейших соединений предложил М. Кальвин. [c.377]


    Роль поверхности и пористости катализатора [c.430]

    Не менее важна роль носителей гетерогенных катализаторов, особенно в случае дорогостоящих металлических катализаторов (Р1, Рё, N1, Со, Ад). Подбором носителя достигаются требуемые пористая структура, удельная поверхность, механическая прочность и термостойкость. В качестве носителей используют окиси алюминия, алюмосиликаты, окиси хрома или кремния, активированный уголь. [c.83]

    Наконец, важнейшую роль играет и сам катализатор, способ его приготовления и т, д. Добавление различных модификаторов нли применение смесей оксидов и солей способно сильно изменять активность и селективность контакта. Так, некоторые каталитические яды (галогены, селен), дезактивируя серебряный катализатор окисления этилена, существенно повышают его селективность. Оксиды молибдена и висмута, в индивидуальном виде вызывающие полное сгорание олефинов, в форме молибдата висмута (В120з МоОз = 1 2) являются селективными катализаторами гетерогенного окисления пропилена. Большое влияние оказывают носитель, размер зерен катализатора, его пористость и т. д. Ввиду возможности последовательного окисления целевого вещества и высокой скорости самой химической реакции на поверхности катализатора переход процесса во внутридиффузиоиную область весьма нежелателен, поэтому используют катализаторы с небольши.ми зернами и сравнительно крупными порами. [c.416]

    Низкие теплоты физической адсорбции определяют малую реакционную способность физически адсорбированных молекул. Этот тип адсорбции поэтому не может иметь непосредственного значения для поверхностного катализа. Однако физически адсорбированные молекулы, ориентированные на поверхности, могут являться своеобразным резервуаром для пополнения хемосорбции или могут участвовать в цепных процессах при наличии на поверхности радикалов. Не менее важна роль физической адсорбции при определении структуры катализаторов (площадь поверхности, пористость, влияние генезиса и т. п.). [c.36]

    Роль поверхности и пористость катализатора [c.444]

    Так как активным компонентом является расплавленная соль, то она легко мигрирует внутрь пор или распределяется по поверхности пористого носителя, а также по мелким частицам пыли, контактирующим с катализатором при температурах реакции. Конечно, поверхностное натяжение и капиллярные силы здесь играют не последнюю роль. На основе химических анализов пыли иногда делаются неверные выводы об истирании и разрушении катализатора, так как не учитывается миграция расплавленной соли. Типичные свойства катализаторов, выпускаемых основными производителями, представлены в табл. 1. Сведения о различных катализаторах, доступных за пределами СССР, приведены в обзоре [10]. [c.245]


    Не менее важна роль носителей гетерогенных катализаторов, особенно в случае дорогостоящих металлических катализаторов (Р1, Р(1, N1, Со, А ). Подбором носителя достигаются требуемые пористая структура, удельная поверхность, механическая прочность и термостойкость. В качестве носителей используют окиси алюминия, алюмосиликаты, окиси хрома или кремния, активированный уголь, пемзу, кизельгур и другие природные и синтетические материалы. На роль носителей бифункциональных катализаторов указывалось выше. [c.419]

    Диффузия при гетерогенном катализе. Диффузионный массоперенос играет большую роль в гетерогенном катализе, в котором обычно используют твердые пористые катализаторы. Во. многих случаях диффузия реагентов (или продуктов реакции) через поры в гранулах катализатора (внутренняя диффузия) значительно влияет на скорость процесса. Промышленные катализаторы имеют активную поверхность порядка нескольких сотен квадратных метров на 1 г, что обусловлено их тонкопористой структурой, т. е. они фактически являются капиллярно-пористыми материалами. [c.536]

    Физическая адсорбция, хотя и не играет решающей роли в гетерогенном катализе, тем не менее она полезна как средство для исследования пористой структуры твердых тел. Она удобна для определения удельной поверхности, формы и размеров пор, наличия закрытых пор и других деталей геометрического строения пористых катализаторов и носителей, особенно в сочетании с электронной микроскопией и ртутной порометрией. [c.202]

    Внутренняя структура адсорбентов и катализаторов, как уже упоминалось, ответственна за скорость процессов, протекающих на их поверхности, кинетику установления сорбционных равновесий, эффективность каталитических реакций, избирательность сорбции и т. д. Короче говоря, структурный фактор, особенно в условиях динамического опыта, играет одну из главных ролей, связанных с явлением диффузии молекул реагирующего вещества к внутренней поверхности твердого тела [79—85]. При этом влияние структуры дифференцированно крупные поры, обладая незначительной удельной поверхностью, выполняют главным образом роль транспортных каналов, по которым обеспечивается доставка реагирующих молекул к внутренним слоям пористого тела и отвод продуктов реакций (в случае гетерогенных каталитических процессов) в объемную жидкую или газообразную фазу. Перенос реагирующих веществ к внутренней поверхности зерен катализатора, как показано выше, осуществляется путем диффузии и оказывает большое влияние на протекание контактных процессов. Если диаметр пор превышает среднюю длину свободного пробега молекул (около 10- см при атмосферном давлении), в порах происходит нормальная диффузия в соответствии с уравнением [c.221]

    Практическое использование адсорбции относится к глубокой древности, когда различные пористые тела находили себе широкое применение при очистке масел и других веществ. В настоящее время процесс адсорбции находит самое разностороннее применение. Активированная адсорбция при гетерогенном катализе как в газовой среде, так и в растворах играет решающую роль в процессе взаимодействия реагирующих веществ на поверхности твердого катализатора (адсорбционный катализ). [c.283]

    Не менее важна роль носителей гетерогенных катализаторов, особенно в случае дорогостоящих металлических катализаторов (Р1, Рс1, N1, Со, Ag). Подбором носителя достигаются требуемые пористая структура, удельная поверхность, механическая прочность и термостойкость. [c.631]

    Высокая активность нанесенных катализаторов обусловлена как большой поверхностью пористых носителей (органических или неорганических), покрытой катализатором, так и химическим взаимодействием титана с носителем, выступающим в роли сложного лиганда при АЦ. [c.11]

    Удельная поверхность любого пористого вешества (катализатора или адсорбента) определяет количество соединения, адсорбируемого единицей массы этого вещества, и играет главную роль в гетерогенном катализе, определяя величину адсорбции и т. д. Установление величины удельной поверхности позволяет также судить о количестве и протяженности активных центров, о величине активной поверхности, об образовании моно- или полислоя в результате адсорбции, о характере поверхностных реакций,—т. е. способствует пониманию сути гетерогенных каталитических реакций. [c.40]

    В огромном числе публикаций приводятся данные об удельной поверхности, объеме и размере пор и их распределении для многих адсорбентов и катализаторов. Характеристика дисперсных и пористых тел через численные значения этих параметров, введенная несколько десятилетий назад, сыграла свою положительную роль и во многих случаях дала возможность четко разделить влияние геометрии и химии поверхности на поведение адсорбентов и катализаторов. Однако известная формальность такой характеристики ограничивает дальнейшее развитие науки о дисперсных и пористых телах и ее приложений. Эту формальность усиливает почти исключительное применение лишь одной модели цилиндрических пор. С позиций такого описания трудно понять механизм образования пористости в том или ином конкретном случае, а значит и построить теорию направленного синтеза пористых тел также трудно понять механизм старения и изменений, вызванных разного рода воздействиями (химическими, механическими, термическими и гидротермальными). Теория прочности дисперсных материалов не может быть создана без данных об их строении. Определение оптимальной пористости структуры катализаторов и ее реализация в промышленных процессах также требуют точных знаний о геометрии пористого тела. [c.7]


    Существующие адсорбционные методы определения структурных характеристик адсорбентов и катализаторов не учитывают химическую природу их поверхности. Между тем многочисленные работы [1—10] указывают на то, что химия поверхности адсорбента, наряду с его геометрической структурой, играет значительную роль в явлениях адсорбции. Изменение химической природы поверхности адсорбентов приводит к существенному изменению их адсорбционной способности не только по отношению к веществам, адсорбция которых является результатом электростатических взаимодействий, но и к веществам, адсорбирующимся только в результате дисперсионных взаимодействий. Поэтому при определении адсорбционными методами геометрических параметров пористой структуры адсорбентов нельзя не учитывать как химию их поверхности, так и химическую природу адсорбата, применяемого для определения параметров пористой структуры. [c.27]

    Фосфорную кислоту применяют или в жидком виде - на твердом инертном носителе, например на пемзе, силикагеле, кварце, активном угле, или в виде специально приготовленного катализатора в смеси с кизельгуром. Фосфорная кислота на кизельгуре представляет собой комплексное соединение, активным началом в котором является фосфорная кислота, а кизельгур играет роль носителя с высокоразвитой пористой поверхностью. Катализаторы этого типа транспортируют в герметически закрытых бочках, хранить их необходимо в сухих отапливаемых в зшлний период помещениях, так как они не терпят сырости и холода. Влага, попадающая из воздуха, нарушает структуру катализатора и приводит к потере каталитической активности. При низких температурах происходит разрушение комплекса, в результате вымораживания снижается содержание влаги, наблюдается механическое разрушение катализатора и потеря его каталитической активнос- [c.40]

    Примерами последней ситуации являются горение углерода и гетерогенное разложение перекиси водорода на пористом активном катализаторе [110, 299, 351]. В этих случаях, например, мгновенное возмущение в условиях, близких к метастабильной точке, может вызвать как повышение, так и понижение температуры поверхности. В первом слзгчае система приходит в установившееся состояние, соответствующее определяющей роли массопереноса через ламинарную пленку у внешней поверхности гранулы. Во втором случае стабилизация наступает при определяющей роли поверхностной реакции. [c.165]

    Даже в том случае, когда носителю приписывают пассивную роль, очевидно, что его структура и химические свойства поверхности оказывают большое влияние на свойства нанесенного катализатора. Так, например, пористость, удельная поверхность и природа поверхности носителя влияют на степень дисперсности нанесенного металла. Кроме того, пористость носителя определяет степень доступности нанесенного металла для реактантов, и, наконец, вещество, используемое в качестве носителя металлической фазы, может проявлять собственную каталитическую активность. Хорошо известный пример этого — бифункциональные платина-алюмосиликатные и платина-цео-литные катализаторы риформинга углеводородов, этой причине в главе, посвященной носителям, рассмат/ ивается не только их структура, но и освещаются некоторые общие вопросы химии поверхности носителей. [c.9]

    Такой результат, однако, во.зможен только в тех случаях, когда диффузия не играет заметной роли, изменение концентрации сырья по высоте реактора не очень значительно или близко для всех опытов, в катализаторе отсутствуют поры, диаметр которых меньше диаметра молекул сырья. При определении активности катализаторов пэ стандартному методу эти услойия почти никогда не реализуются. Поэтому экспериментально определяемая удельная глубина превращения в общем случае должна зависеть от удельной поверхности испытуемого катализатора и пористости его структуры. На рис. 1 приведены значения удельной глубины превращения, рассчитанные по данным [6, 7] и взятые из работ [2, 31. [c.98]

    Особенно большое значение имеет учет макрокинетических факторов для органического катализа. В большинстве случаев сюда относятся сложные параллельные или последовательные реакции, для которых весьма существенную роль играет избирательность катализатора. Примеры влияния макрофакторов на такие процессы, как окисление нафталина во фталевый ангидрид, селективное окисление НаЗ в коксовом газе, приводились нами в главе о макрокинетике. Как мы видели, иногда отрицательное влияние пористости катализатора на избирательность столь велико, что выгоднее переходить на компактные непористые зерна катализатора даже за счет уменьшения поверхности контакта. [c.173]

    Приведенных нами данных вполне достаточно, чтобы прийти к выводу об ограниченной роли соотношения между объемом пор и величиной поверхности при детальном определении геометрии пор в пористом материале. При этом следует подчеркнуть два момента 1) оценка точных значений ир и 5 на основании экспериментальных данных осуществляется путем в некоторой степени произвольного выбора на изотерме точек, соответствующих полному заполнению пор и завершению образования сплошного монослоя на всей поверхности и 2) найденное геометрически отношение 2ир18 не дает возможности охарактеризовать специфику пористой структуры. Несмотря на эти недостатки, рассмотренный метод определения среднего размера по результатам измерений объема пор и величины поверхности может иметь некоторое значение. Основной недостаток этого метода заключается в том, что с его помощью нельзя точно определить геометрию пор. Тем не менее если допустить, что полученная таким образом величина представляет собой эффективный радиус пор, то модель пор, в соответствии с которой капилляры эквивалентны вписанным цилиндрам, окажется не слишком плохой по сравнению с тем решением этой задачи, которое получают исходя из результатов определения скоростей химических реакций в пористых катализаторах. [c.186]

    Испытаны образцы катализатора с измельченными гранулами, имеющие цилиндрическую форму различного диаметра и в сечении трехлепестковую симметричную и четырехлепестковую асимметричную формы. Поэтому преимущество катализатора с нецилиндрической формой гранул по сравнению с катализатором с цилиндрической формой граиул выражается в уменьшении отношения объема гранулы к ее поверхности при одном внешнем диаметре частицы иными словами, такой катализатор характеризуется большей внешней поверхностью на единицу объема. При одинаковом отношении объема гранулы к ее поверхности катализатор с нецилиндрической формой гранул характеризуется большей пористостью слоя. Оба зти показателя играют существенную роль при переработке остаточного сырья. [c.111]

    Диффузионный перенос массы играет важную роль в зернистых слоях, состоящих из пористых зерен катализатора. В этом случае диффузия происходит сквозь пограничный слой, окружающий поверхность зерна, и далее — вглубь пор. Само собой разумеется, что диффузионный перенос массы происходит и в противополон<-ном направлении. Диффузия в порах зависит от их формы и размера. [c.96]

    Y-AI2O3 получают прокаливанием А1(0Н)з при 500—700°С. По прочности он уступает корунду, но является более пористым материалом. Объем его составляет 50—70%, удельная поверхность — 120—150 м /г. Y-AI2O3 выступает не только в роли носителя, но и катализатора в ряде процессов конденсации, дегидратации, гидролиза (см. табл. 1). Известно большое число способов приготовления активной Y-AI2O3 [115—119]. Рассмотрим некоторые из них. [c.138]

    На стереохимию гидрирования могут оказывать влияние функ-щюнальные заместители в восстанавливаемом соединении, способные взаимодействовать непосредственно с катализатором или носителем ( якорный эффект). Так, гидрирование двойной связи в 1 -бензилоксикарбонил-4-пропилиденпирролидин-2-карбоновой кислоте на платиновом катализаторе приводит в основном к образованию г/г/с-изомера. Следовательно, эта непредельная кислота в ходе реакции адсорбируется на катализаторе большей частью таким образом, что ее карбоксильная группа обращена в сторону, противоположную поверхности катализатора. Чтобы изменить положение молекулы кислоты на катализаторе при адсорбции и тем самым стереонаправленность гидрирования, используют в качестве носителя катализатора не нейтральный пористый материал, как обычно, а основную ионообменную смолу. Благодаря солеобразованию с такой подложкой карбоксильная группа начинает играть роль своего рода якоря, ориентирующего адсорбирующуюся молекулу карбоксильной группой вниз, к поверхности катализатора. Теперь уже атом водорода, перемещаясь от катализатора к С -атому гетероцикла, образует с ним связь с той стороны, в которую обращена карбоксильная группа, т. е. занимает по отношению к ней /1/с-положение, тогда как про пильный заместитель оказывается в трапс-иоШ жении  [c.32]

    Широкие пределы разбега численных значений энергий активации для различных сортов технического углерода свидетельствуют о весьма большой разнице в скоростях горения этих углеродов. Она может быть связана со степенью чистоты применяемой углеродной массы, могущей содержать в себе остатки различных примесей органического и неорганического происхождения. В частности, примесь золы известного качества может начать играть роль катализатора процесса горения или восстановления. Однако один и тот же по качеству и чистоте технический углерод может дать совершенно различные кривые зависимости скорости горения от температуры, т. е., иначе говоря, характеризоваться различными энергиями активации, если ра1зличными окажутся состояния его поверхностей (углеродные тела различной плотности и пористости). [c.76]

    Скорость протекания реакций, диффузионных, ми-грацпонных И конвективных процессов определяется свойствами применяемых катализаторов, пористой структурой активного -слоя и конструкцией электрода. Если вл-ияние диффузионных и конвекционных процессов на активность электрода невелико, то такой электрод по принятой терминологии работает в активацион-йо-о мическом режиме. В этом случае теория учитывает только электрохимическую активность катализатора и его поверхность, электронную -и ионную проводимости акБивного слоя. Следует отметить, что существующие теории пока еще только качественно рассматривают влияние конвективных процессов на активность газодиффузнонных электродов и ТЭ -в целом, роль которых пр-и больших плотностях тока заметно возрастает. Удельная проводимость порошков катализаторо-в обычно существенно больше эффективной проводимости электролита в активном слое, и поэтому влиянием ее на активность пренебрегают. У катализаторов окисного типа, активированных углей, металлоподобных И других соединений проводимость -может быть сравнима пли даже ниже проводимости электролита. При отсутствии [c.96]

    Значительную роль в каталитическом процессе окисления сероводорода наряду с составом катализатора играет и пористая его структура, в частности величина внутренней поверхности его кусков. Так, активированный боксит или алюмогель, сорбенты, содержащие окись алюминия гидраргиллитовой структуры, имеют большую удельную поверхность до. 180 ж /г и обладают высокими каталитическими свойствами [4, 5]. [c.180]

    Повышенное значение пористости вблизи офани-чивающих поверхностей можно объяснить изменением геометрии укладки частиц вблизи стенки. В этом случае область влияния твердой стенки по радиусу аппарата достигает 4-6 диаметров частиц [6, 19]. Очевидно, что для аппаратов (или их трубчатых элементов), диаметр которых во много раз больше размера зерна катализатора, пристенная неоднородность не играет существенной роли. [c.567]


Смотреть страницы где упоминается термин Роль поверхности и пористости катализатора: [c.382]    [c.44]    [c.511]    [c.39]    [c.162]    [c.31]    [c.302]    [c.83]    [c.55]    [c.55]    [c.55]    [c.139]    [c.177]   
Смотреть главы в:

Химическая кинетика и катализ 1974 -> Роль поверхности и пористости катализатора




ПОИСК





Смотрите так же термины и статьи:

Катализатора поверхность

Катализаторы как пористые

Катализаторы пористость

Поверхность пористых тел



© 2025 chem21.info Реклама на сайте