Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий строение электронных оболочек

    Элементы бор, алюминий, галлий, индий и таллий. Строение их атомов и внешняя электронная оболочка. Отличие бора от других элементов группы. [c.219]

    Рассмотрим возможные причины сходства элементов. Сходство элемента с его соседями сверху и снизу есть внутригрупповое сходство элементов-аналогов оно обусловлено прежде всего близким строением самых внешних электронных оболочек. Наибольшее сходство и изоморфизм проявляют тяжелые аналоги с близким строением внешних электронных оболочек, например калий и рубидий, серебро и золото, кальций и стронций, цинк и кадмий, скандий и иттрий, иттрий и гадолиний-лютеций, цирконий и гафний, ниобий и тантал, железо и никель, кобальт и никель и т. д. Значительные же различия свойств элементов-аналогов в высших валентных состояниях, когда все электроны уходят с внешней оболочки, большей частью обусловлено несходством строения внешних оболочек ионов (литий и натрий, бериллий и магний, бор и алюминий, углерод и кремний и т. д.). [c.158]


    Согласно формальной классификации, с учетом строения электронной оболочки, алюминий относится к числу р-элементов, так как (см. выше) электронная оболочка его изолированного нейтрального атома имеет строение ls 2s 2p 3s 3p т. е. собственный электрон алюминия начинает Зр-электронный подуровень. Потеряв наружные Зх Зр -элект-роны, алюминий становится трехзарядным ионом с благородногазовой электронной подкладкой (2s 2p ), что и определяет валентные отношения алюминия. Ион А1 + изоэлектронен с ионами соседних по периоду элементов II и I группы Mg + и Na+. Однако благодаря большему за- [c.52]

    По строению электронной оболочки атомов к металлам относят все s-элементы, кроме водорода и гелия, все d- и f-элементы и ряд р-элементов — алюминий, олово, свинец и др. Металлы в конденсированном (жидком или твердом) состоянии обладают способностью к отражению света, высокой тепло- и электропроводностью, пластичностью и текучестью. Они имеют сравнительно высокие температуры плавления и кипения. Эти специфические свойства металлов объясняются наличием у них особого типа химической связи, получившей название металлической связи. Атомы металлов содержат на внешнем энергетическом уровне небольшое количество электронов, которые достаточно слабо связаны со своим ядром, В то же время атомы металлов имеют много свободных валентных орбиталей. Эти орбитали отдельных атомов перекрываются друг с другом, обеспечивая электронам способность свободно перемещаться между ядрами во всем объеме металла. Следовательно, в кристаллической решетке металлов электроны обобществлены. Они непрерывно перемещаются между положительно заряженными ионами, которые расположены в узлах кристаллической решетки. При этом сравнительно небольшое число обобществленных электронов ( электронного газа ) связывает большое число ионов, [c.116]

    Строение электронных оболочек атомов и ионов позволяет объяснить и предсказать действия многих реагентов. Если рассмотреть деление периодической системы на четыре блока (s-блок, р-блок, d-блок и f-блок), элементы -блока и /-блока образуют комплексные соединения. Для них также характерно взаимодействие с органическими реагентами и образование большого числа окрашенных соединений. Цирконий и торий (d- и /-блок) образуют с арсеназо 1П устойчивые комплексные соединения зеленого цвета. Магний и алюминий (s-и р-блок) не взаимодействуют с арсеназо П1. В s-блоке расположены элементы, в которых строится s-оболочка над электронной структурой инертного газа — это щелочные и щелочноземельные элементы. Элементы s-блока [c.283]


    К р-элементам 1ИА-подгруппы периодической системы относятся элементы бор (В), алюминий (А1), галлий (Оа), индий (1п), таллий (Т1). Строение внешних электронных оболочек их атомов (см. 4.4) ns p (в невозбужденном состоянии) и п р р (в возбужденном состоянии). Бор (первый р-элемент), галлий, индий, таллий объединяются в подгруппу галлня. [c.270]

    Свойства атомов. Энергии ионизации изменяются в 1ПА-подгруппе немонотонно (табл. 17.2). Это объясняется строением электронных оболочек атомов. Хотя электронные формулы валентных подуровней одинаковы для всех элементов подгруппы пв пр , строение электронных остовов их атомов сильно различается. В отличие от металлов 1А- и ПА-подгрупп, у которых атомные остовы описываются электронными формулами, характерными для атомов благородных газов, в ША-подгруппе такие остовы имеют только бор и алюминий. У галлия и индия атомные остовы завершаются заполненными ( -подуровнями, а у таллия — ( -и /-подуровнями. [c.310]

    Поведение элементов III группы хорошо объясняется строением электронной оболочки атомов. Эти атомы содержат в своей валентной оболочке три электрона два на s-орбитали и один на р-орбитали. Заполнение внешней оболочки пятью электронами с образованием отрицательного иона, имеющего электронную конфигурацию ближайшего в периодической таблице инертного газа, невозможно, поскольку заряд ядра недостаточен для связывания такого большого числа электронов. Наоборот, могут быть отданы три валентных электрона с образованием положительных ионов (которые у Ga, In и Т1 не имеют электронной конфигурации инертного газа). Поэтому алюминий и остальные элементы III группы образуют преимущественно положительные трехвалентные ионы и, следовательно, обладают металлическим характером. (Вследствие своего сравнительно малого объема и большого заряда ион алюминия сильно гидратирован.) [c.574]

    Свойства элементов и их соединений. Галлий, инднй, таллий, как и лантаниды, относятся к III группе Периодической системы Д. И. Менделеева. Они находятся в главной подгруппе и являются аналогами алюминия. В основном электронном состоянии атомы этих элементов имеют строение внешних электронных оболочек Три электро- [c.212]

    Ион алюминия в основном состоянии имеет электронное строение Ь 2х 2р , и орбитали его валентной оболочки при изображении по методу орбиталей-ячеек выглядят следующим образом  [c.414]

    Адсорбционные свойства окислов металлов в значительной степени определяются расположенными на их поверхности атомами металла. В случае окислов переходных металлов адсорбция молекул на этих центрах может сопровождаться образованием различных типов связей, зависящих прежде всего от строения -электронной оболочки атомов металла [73]. На окиси алюминия, алюмосиликагеле и декатионированных цеолитах поверхностные атомы алюминия вследствие их резко выраженного электроноакцепторного характера образуют с кислород- и азотсодержащими соединениями прочную донорно-акцепторную связь [3, 27, 68, 74—76]. Способность к образованию такой связи, как показано в проведенном [c.128]

    Ион А1 +, в отличие от ионов 8Ьз+ и В1з+, имеет 8-электронную оболочку, поэтому соли его гидролизуются несколько в меньшей степени, pH водных растворов солей алюминия около 4. Из двух ионов, имеющих одинаковые электронные оболочки, в большей степени отталкивать протоны гидратной оболочки будет тот, у которого больше заряд. Например, ионы 5п2+ и 5Ьз+ имеют одинаковое строение электронной оболочки (см. табл. 1), но склонность к гидролизу больше у солей 5Ьз+. [c.58]

    Исходя из положения алюминия в периодической системе элементов, нарисуйте схему строения электронных оболочек атома алюминия и его трехзарядного катиона. [c.59]

    Одинаковое строение внешней электронной оболочки атома бора и алюминия обусловливает сходство в свойствах этих элементов. Так, для алюминия, как и для бора, характерна только степень окисления +3. Однако при переходе от бора к алюминию сильно возрастает радиус атома (от 91 до 143 пм) и, кроме того, появляется еще один промежуточный восьмиэлектронный слой, экранирующий ядро. Все это приводит к ослаблению связи внешних электронов с ядром и к уменьшению энергии ионизации атома (см. табл. 15.2). Поэтому у алюминия металлические свойства выражены гораздо сильнее, чем у бора. Тем не менее химические связи, образуемые алюминием с другими элементами, имеют в основном ковалентный характер. [c.400]

    Особенности строения трех внешних электронных оболочек могут быть отражены путем сдвигов элементов в периодической системе Менделеева, которая в этом случае приобретает вид, представленный в табл. 11 (короткая форма) и табл. 10 (развернутая форма). В этих таблицах смещения элементов-аналогов из вертикальных столбцов характеризуют, с одной стороны, различия их строения и свойств (бор и алюминий, углерод и кремний и т. д.), а с другой, они символизируют сближение свойств элементов разных подгрупп одной и той же группы, например алюминия и скандия, кремния и титана и т. д. Эти же смещения указывают на сближение свойств элементов соседних групп в одном диагональном направлении (например, лития с магнием, бериллия с алюминием, бора с кремнием и т. д.) и на отдаление свойств элементов в другом диагональном направлении (например, магния с бором, алюминия с углеродом, кремния с азотом, ниобия с хромом, молибдена с марганцем и т. д.). [c.159]


    По химическому поведению галлий близок к алюминию с учетом особенностей строения внешней электронной оболочки. Подобно алюминию, галлий на воздухе покрывается плотной оксидной пленкой СагОз и поэтому практически не изменяется. С галогенами реагирует на холоду. Образуются белого цвета соединения, молекулы которых димеризованы, например  [c.319]

    Из сделанного обзора строения атомов первых 20 элементов периодической системы можно сделать чрезвычайно важные выводы. У атомов водорода и гелия, входящих в п е р в ы й период периодической системы Д. И. Менделеева, имеется одна электронная оболочка, причем образование этой оболочки начинается у водорода, первого элемента этого периода, и кончается у гелия, последнего элемента этого периода. У атомов лития, бериллия, бора, углерода, азота, кислорода, фтора и неона, входящих во второй период периодической системы, имеются две электронные оболочки, причем образование второй оболочки начинается у лития, первого элемента этого периода, и кончается у неона, последнего элемента этого периода. У атомов натрия, магния, алюминия, кремния, фосфора, серы, хлора и аргона, входящих в третий период периодической системы, имеются три электронные оболочки, причем образование третьей электронной оболочки начинается у натрия, первого элемента этого периода, и кончается у аргона, последнего элемента этого периода. У атома калия, начинающего четвертый период периодической системы, начинается образование четвертой электрон- [c.212]

    Если следовзть формзльному принципу отнесения элементов больших периодов к главной или побочной подгруппе, основанному на строении электронной оболочки нейтрального (изолированного) атома элемента [2], то аналогами алюминия следует считать элементы под- [c.49]

    Третья группа. Для элементов подгруппы бора (за исключением таллия) характерна степень окисления +3. Последней соответствуют соединения Э(ОН)з. Происходит дальнейшее ослабление (от I группы к И, от И к П1) основных свойств. Если LiOH—основание, а Ве(0Н)2 — амфотерное соединение, то В(ОН)з —кислота. Таким.образом, при переходе к третьей группе мы впервые встречаемся с элементом, образуюш,им кислоту (этим бор отличается и от всех элементов И1 группы), и с иэополикислотами, которые также характерны для бора. В соответствии с увеличением радиусов ионов элементов ВН ряду А1(0Н)з —Т1(ОН)д происходит усиление основных свойств. Если 6а(ОН)з отличается практически одинаковой степенью диссоциации с отщеплением ионов 0Н и Н+, то у 1п(0Н)з несколько преобладают основные свойства, а у Т1(0Н)з амфотерные свойства выражены очень слабо. Обращает на себя внимание очень медленное усиление основных свойств в этом ряду соединений. Это объясняется тем, что если атомы элементов третьей главной подгруппы являются электронными аналогами (их внешний электронный слой имеет строение s p), то ионы В + и А1 + сильно отличаются от Ga +, и ТР+. Первые имеют наружные оболочки атомов благородных газов, а вторые — 18-электронные оболочки, содержащие 10 d-электронов. Вследствие этого увеличение радиусов ионов после алюминия становится менее значительным, что и приводит к медленному усилению основного характера соединений. Здесь, так же как и в предыдущей группе, наблюдается диагональное сходство амфотерные гидроксиды А и Ве близки по свойствам. [c.91]

    Конфигурация внешних электронных оболочек атома алюминия 3s 3p. Характерной степени окисления - -3 соответствует строение 2,зЗрхЗ[Уу  [c.338]

    Гал.лий, индий и таллий по своему атомному строению соответствуют бору и алюминию, поскольку у них у всех одинаковая конфигурация внешней электронной оболочки (два s-электрона и один р-электрон). От бора и алюминия они, однако, отличаются, поскольку у них вслед за уровнем s p следует не уровень (оболочка инертного газа), а уровень (см. табл. II в приложении). Эта особенность строения влияет на свойства и поведение как свободных элементов, так и их соединений. [c.363]

    Ионы с более высоким зарядом образуют менее растворимые соединения, чем ионы с меньшим зарядом. Например, растворимости Ре(ОН)з и Ре (ОН) 2 соответственно равны 5,8-10- и 6,3-10 моль/л. Ионы Mg2+ и АР+ имеют одинаковое строение электронных оболочек, но растворимость солей алюминия меньше, чем солей магния, например растворимость AIPO4 равна 7,5-10- ° моль/л, а растворимость Mgs(P04)2 составляет 3,1 10-3 моль/л. [c.17]

    АЛЮМИНИЙ (Aluminium) Al. — химич. элемент III гр. периодич. системы Менделеева п. н. 13, ат. в. 26,98. Состоит из одного стабильного изотопа А1> (100%). Известно неск. искусств, радиоактивных изотопов, из к-рых большинство короткоживущие. Единственно пригодным для индикаторных исследований является изомер А1 (T i =10 лет). Поперечное сечение захвата тепловых нейтронов А. 0,215 барн. Внешняя электронная оболочка атома А. имеет строение 3 2 Зр. Потенциалы ионизации (в зв) А1 —. [c.74]

    Конфигурация внешней электронной оболочки агома алюминия зЛр. Характерной степени окисления +3 соответствует строение 3i3p,3/  [c.351]

    Используя представления о кайносимметрии, можно выделить более тонкий вид электронной аналогии, так называемую слоевую аналогию (в дополнение к групповой и типовой аналогии). Слоевыми аналогами называют элементы, которые являются типовыми аналогами, но не имеют внешних или предвнешних кайносимметричных электронов. К таким аналогам относятся, например, в IA-группе К, Rb, s и Fr, а Li и Na не являются слоевыми аналогами с остальными щелочными металлами, поскольку у Li присутствует внешняя кайносимметричная 2р-оболочка (вакантная), а у Na кайносимметрнчная заполненная 2р-оболочка является предвнеш-ней. В ПА-группе слоевыми аналогами являются щелочно-земельные металлы (подгруппа кальция), а в П1А-группе — элементы подгруппы галлия и т. д. С точки зрения электронного строения слоевые аналоги являются между собой полными электронными аналогами. Поэтому рассматривать химические свойства элементов группы мы будет в такой последовательности первый типический элемент, второй типический элемент, остальные элементы главной подгруппы, элементы побочной подгруппы. Например, в И1 группе отдельно рассматриваются бор, алюминий, подгруппа галлия, подгруппа скандия в V группе — азот, фосфор, подгруппа мышьяка, подгруппа ванадия п т. п. [c.15]

    Общий характер взаимодействия ионов металлов с различными органическими реагентами в большой степени зависит, как уже сказано, от природы и заряда ионов металлов, в первую очередь от строения их электронных оболочек. Ионы, распределение электронов в которых близко к распределению электронов в атомах ртнертных газов, легче взаимодействуют с реагентами, у которых активными, т. е. участвующими в комплексообразовании с метал-Jroм, являются атомы кислорода. Сюда относятся щелочные и щелочноземельные металлы, элементы подгруппы титана, алюминий, скандий. Склонность к взаимодействию с кислородом проявляют также лантапиды и актиниды., имеющие иную электронную структуру. Элементы этой группы дают комплексы и с азотом, но, как правило, для них нехарактерно взаимодействие с серой. [c.17]

    И еше вот на что хотелось бы обратить внимание. Мы уже не раз подчеркивали на примере фторидов глубокую органическую связь теории с практикой. Она прослеживается и здесь строение атома, электроны, электронные оболочки, энергетические уровни... субфторид... промышленное производство сверхчистого алюминия для нужд новой техники. [c.132]

    В ионных соединениях валентность элемента можно определить как число электронов, отдаваемых или захватываемых при образовании ионов с внешней электронной оболочкой инертного газа. Пусть, например, алюминий и кислород образуют ионное соединение — окись алюминия. Атомы алюминия (III группа Периодической системы элементов) в нейтральном состоянии содержат во внешней электронной оболочке три электрона. Следующая, нижележащая оболочка тождественна внешней восьмиэлектронной оболочке неона. Следовательно, потеря трех электронов атомом алюминия приведет к тому, что оставшаяся его часть приобретет электронное строение неона. У атома кислорода — элемента VI группы Периодической системы — во внешней оболочке находится шесть электронов, т. е. для полной застройки восьмиэлектронной оболочки неона не хватает двух элементов. Таким образом, возникают ионы А1 + и Окись алюминия, очевидно, электроней- [c.299]

    Можно совместить подгруппы металлов, обладающих одинаковым числом внешних, относительно слабо связанных электронов на заполняющихся 5-, й- и /-нодоболочках, т. е. й- и /-переходных металлов и элементов главных подгрупп с заполняющимися р -оболочками, в основном (за исключением алюминия, таллия и свинца) полупроводниковых и неметаллических элементов. Такая заключительная операция приводит к классической таблице Менделеева (табл. И), но уже не с двумя, а с тремя подгруппами, возникающими в результате размещения в 6-м и 7-м периодах элементов с заполняющимися /-подоболочками, которым, как и переходным металлам с заполняющимися -подоболочками в обычной таблице, необходимо дать определенные смещения для отражения специфических особенностей их электронного строения и свойств. Такое размещение лантаноидов и актиноидов без нарушения последовательности возрастания атомных номеров и с распределением их по группам в соответствии с периодичностью заполнения электронных оболочек точно отвечает периодическому закону Менделеева. [c.43]

    Чрезвычайно ярко проявляются отклонения, обусловленные различием строения внутренних электронных оболочек, в аналитическом поведении элементов подгруппы Illa. Бор, который обладает электронной конфигурацией ls 2s 2j3 имеет преобладаюш ие электроотрицательные свойства и образует кислоты (Н3ВО3 и др.), проявляя себя в качестве типичного аниона. Алюминий, ион которого АР+, имеет внешнюю конфигурацию 2s 2j9 , образует слабо основную и труднорастворимую гидроокись, выделяющуюся при действии сульфида аммония. На этом основании и по другим признакам алюминий относится к III аналитической группе, возглавляя первую ее подгруппу (см. табл. 19 и 20). Галлий и индий, ионы которых Ga + и 1п + имеют внешние конфигурации 3d и обычно [c.103]

    Распределение по фазам зависит от строения внешних электронных оболочек атома. Но распространенность химических элементов в данной системе в известной степени оказывает определенное влияние на распределение но фазам. Наиболее распространенными элементами, как мы видели, являются четно-четные О, 81, 8, Ее, Mg. В метеоритном веществе они об разуют три главных фазы, причем превалирует силикатная фаза, благодаря большому содержанию О и 81, затем железная фаза из-за значительного содержания Ее и, наконец, сульфидная фаза, в связи с заметным содержанием 8. Но представим на момент, что кислород в составе метеоритного вещества отсутствует, окисные соединения, силикаты и другие не образуются, все химические элементы встречаются лишь в виде сульфидов кремния, алюминия и т. п. Обратно — при отсутствии 8 все металлы, которые мы обычно видим в качестве сульфидов, превратились бы в окиси 8Ь, В1, РЬ, 8п и т. д. Таким образом, первичное распространение только двух элементов О и 8 и их соотношения задают характер распределения всех других элементов по этим превалирующим фазам или по главным руководящим элементам. Вот почему Гольдшмидт и предложил первую, по существу геохимическую классификацию химических элементов. До того геохимики пользовались только химической классификацией — редкие земли, нейтральные газы, благородные металлы и т. п. Он выделил группу сидерофиль-ных элементов, образующих с железом непрерывные твердые растворы, [c.209]


Смотреть страницы где упоминается термин Алюминий строение электронных оболочек: [c.317]    [c.282]    [c.350]    [c.69]    [c.62]    [c.87]    [c.3]    [c.94]    [c.212]    [c.212]   
Основы общей химии Том 2 (1967) -- [ c.192 ]




ПОИСК





Смотрите так же термины и статьи:

Алюминий строение

Оболочка

Электронная оболочка

Электронное строение

электронами электронное строение



© 2025 chem21.info Реклама на сайте