Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пропилен хлорирование

    Хлорирование пропилена. Хлор, замещая в пропилене молекулу водорода, может оставить двойную связь неразрушенной  [c.42]

    Хлорирование пропилена ведется прн высокой температуре (500—510 С). Предварительно осушенный пропилен подогревается до 400° С, смешивается с хлором в соотношении 5,5 1. Реакция экзотермична, температура регулируется вводом холодного хлора. [c.324]

    Хлорирование. Реакционная способность углеводородов возрастает с увеличением протяженности углеродных цепей. Фотохимическое хлорирование при умеренных температурах более эффективно действует на атомы водорода, связанные с третичным углеродом, так как связи первичного углерода с водородом более стабильны. При 500—600 °С все углеродно-водородные связи достигают примерно одинакового уровня реакционной способности. Ненасыщенные углеводороды в отличие от насыщенных реагируют в жидкой фазе при низких температурах, отсутствии света и катализатора. Пропилен хлорируется значительно быстрее, чем этилен 2-бутен — с такой же скоростью, что и изобутан, но гораздо быстрее, чем 1-бутен и пропилен. Бутан может быть хлорирован при комнатной температуре в темноте, если в нем содержится несколько процентов бутенов, которые облегчают хлору разрушение механизма цепей. [c.41]


    Выделившийся при реакции клареновый углерод действует как катализатор хлорирования. Реактор должен работать почти на максимальной мощности. Выходящая из реактора реакционная смесь содержит аллилхлорид, непрореагировавший пропилен, ненасыщенные моно- и дихлориды, хлористый водород и небольшое количество высокохлорированных продуктов (табл. 19). При точном соблюдении температурного режима насыщенные дихлориды образуются в небольших количествах, так как 1,2-дихлорпропан, например, снова разлагается уже при 500 °С. [c.179]

    Основные работы по химическому использованию различных продуктов каталитического гидрирования окиси углерода, проведенные в Германии, были обусловлены нехваткой определенных видов сырья в военное время. Например, вследствие дефицита натуральных жиров три фракции продуктов каталитического гидрирования окиси углерода перерабатывали в различного рода заменители. Фракцию дизельного топлива (насыщенные Сю—С а-углеводороды) использовали для получения синтетических моющих веществ с помощью сульфохлорирования (гл. 6, стр. 98) или хлорирования, за которым следовали конденсация с бензолом и сульфирование (гл. 5, стр. 87). Твердый синтетический парафин окисляли в высшие жирные кислоты, необходимые для производства различных сортов мыла (гл. 4, стр. 74). Из синтетического парафина можно получить жирные кислоты с большим молекулярным весом, чем у кислот, производимых окислением нефтяного парафина. Олефины с 10—18 атомами углерода превращали с помощью каталитической гидроконденсации с окисью углерода и водородом (оксо-синтез) в альдегиды и первичные спирты (гл. 11,стр. 195). Последние затем переводили обработкой серной кислотой в первичные алкилсуль-фаты с длинной цепью углеродных атомов. Пропилен и бутилены гидратировали в соответствующие спирты, которые затем дегидрировали в кетоны (гл. 8, стр. 149, и гл. 17, стр. 314 и 329). Из других областей применения продуктов каталитического гидрирования окиси углерода в Германии следует назвать производство синтетических смазочных масел, описание которого выходит за пределы данной книги. [c.63]

    Отходящий газ промывается водой в абсорбере, где поглощается хлористый водород с получением технической соляной кислоты, а пропилен проходит через скруббер щелочной очистки от следов хлористого водорода, затем подвергается осушке и возвращается на хлорирование. Кубовый остаток подвергается ректификации и направляется на гипохлорирование. [c.324]

    В промышленных условиях используют гомогенные газовые реакции, имеющие достаточно высокую скорость. При температурах <600—800° С скорость реакции между газами обычно очень мала. При высокой температуре скорость таких реакций становится большой (превышает скорость обычной каталитической реакции), поэтому промышленное их использование экономически выгодно. Например, широкое применение в промышленности имеют следующие реакции, протекающие в гомогенной газовой фазе при высокой температуре синтез соляной кислоты из элементов крекинг метана в ацетилен или сажу крекинг углеводородов (пропан, бензин) в этилен и пропилен окисление, хлорирование и нитрование углеводородов. [c.53]


    Следующая возможность улучшить смешение компонентов реакции состоит в том, чтоб Ы впрыскивать в камеру для хлорирования хлор по оси, а пропилен по касательной [20]. Наконец, предлагается установка для хлорирования, на которой работает вертикальный реактор и применяются агенты теплопередачи [12]. [c.181]

    В производстве эпихлоргидрина (ЭХГ) одним из промежуточных веществ является хлористый аллил (ХА) получаемый на узле хлорирования пропилена. Основным сырьем для получения ХА являются пропилен и хлористый водород. Непрореагировавшие пропилен и хлористый водород поступают в отделение очистки. Процесс очистки заключается в полном поглощении хлористого водорода водой с получением соляной кислоты. Для окончательной очистки от следов хлористого водорода пропилен промывают щелочью и водой в абсорбере, загруженном кольцами Рашига. Очищенный пропилен поступает в компрессорное отделение. [c.103]

    Олефины играют преобладающую роль в нефтехимическом синтезе. Наибольшее значение для химической переработки имеют газообразные олефины — этилен, пропилен, бутилены, изобутилен. Хлорированием газообразных олефинов при 400—500 получают хлор-олефины. [c.82]

    Конденсационный метод. Этот метод считается лучшим и потому внедрен в промышленность. Реакционные газы направляются прямо лз реактора, где проводилось хлорирование, в так называемый форфракционатор, где в результате охлаждения жидким пропиленом ири —40 "С конденсируются органические хлориды. Пропилен вместе с образовавшимся при реакции хлористым водородом поступает в НС1-абсорбер, где хлористый водород поглощается водой. Пропилен после щелочной промывки возвращается в цикл [10, И]. Зависплюсть среднего выхода продуктов (в расчете на израсходованный пропилен) от температуры показана на рис. 45. [c.180]

    В процессе разработки промышленного метода производства хлористого аллила высокотемпературным хлорированием пропилена пришлось столкнуться с многими трудностями технического характера. Так, например, хлорирование следует проводить очень быстро. Если смешивать реагирующие вещества на холоду и затем нагревать смесь, то, прежде чем достигается рабочая температура, при которой начинается реакция замещения, происходит присоединение хлора. Если пропилен и хлор смешивать в горячем состоянии, могут происходить вспышки и выделение сажи. Кроме того, существует верхний предел температуры, который нельзя переходить, чтобы не вызвать пиролитического распада хлористого аллила. [c.172]

    СНо = СН - СНС . - получается хлорированием 98 -ного пропилена при 500+520 хлором в молярном отношении хлора к пропилену 1 4. Выход хлористого аллила по хлору 80+85у . [c.48]

    Гидродинамика газовых потоков в вихревом реакторе определяет условия течения реакции хлорирования, несмотря на ее скоротечность. Действие поля центробежных сил и устойчивость струйной структуры позволяет усилить положительный эффект реакции и свести к минимуму выход побочных продуктов, образование которых обусловлено более длительным временем контактирования хлора с пропиленом и хлористым аллилом. Перемещения молекул С1г И С3Н, не тормозят процесс реакции. Скорости реакции хлорирования можно определить по формуле (при Тр = 773 К) [c.260]

    При Преодолении этих трудностей исследователи руководствовались выводами, сделанными Хассом в его работах по хлорированию парафиновых углеводородов в газовой фазе (гл. 5). Хлорированию подвергали пропилен, взятый в избытке. Пропилен не должен был содержать пропана, поскольку последний при хлорировании дает 1- и 2-хлорпропаны, температуры кипения которых близки к температуре кипения хлористого аллила. Процесс проводили так, чтобы хлор Уступал в реакцию полностью. Чтобы избежать местных избытков хлора, нужно было обеспечить очень быстрое и эффективное смешение реагирующих газов. [c.173]

    При пуске первой установки синтеза хлористого аллила выявилась неработоспособность узла изотермической абсорбции. В гидравлических расчетах специалисты фирмы, по всей вероятности, перепутали противоточное движение продуктов между аппаратами с прямоточным внутри них. В результате пропускная способность абсорбции по хлористому водороду и пропилену, а также соляной кислоте, движущимся навстречу друг другу между аппаратами оказалась 30-36% от проекта. Смесители хлорирования пропилена не могли эксплуатироваться продолжительное время при нагрузках ниже 60% от проекта. На малых скоростях смещения хлора и пропилена они забивались. [c.143]

    Газообразный пропилен из верхней части резервуара 4 поступает в подогреватель 5, в котором нагревается до 350—400° —температуры, требуемой для обеспечения температуры хлорирования. [c.282]

    Продукты конденсации дихлордибромметана с пропиленом или изобутиленом могут конденсироваться в дальнейшем с олефинами, при этом реакция включает и присоединение по двойной связи атома брома, находящегося у хлорированного атома углерода [7]. Так, например, реакция 1,1-дихлор-1,3-дибромбутана с пропиленом дает 2,6-дибром-4,4-дихлоргептан  [c.235]

    Раньше основным источником крезолов был каменноугольный битум в настоящее время их получают в основном из толуола и фенола [19]. Технологический процесс производства крезолов с использованием в качестве исходного вещества толуола может включать стадию сульфирования, либо стадию алкилирования пропиленом, либо, наконец, стадию хлорирования. В процессе, включающем стадию сульфирования, основным продуктом реакции, является лара-изомер и небольшое количество орго-изомера. В процессе, включающем стадию хлорирования, образуется около 50% лета-изомера и примерно равные количества орто- и пара-ироиз-водных. Заметим, что для производства ФС такой изомерный состав особенно предпочтителен. [c.25]


    Чистый пропилен извлекается из нефтезаводских газов, получаемых в процессе крекинга, и подвергается хлорированию при температуре 450—500° С, образуя хлористый аллил, который затем с хлорноватистой кислотой образует хлоргидрин. При омылении хлоргидрина щелочью.получается глицерин  [c.60]

    Принципиальная технологическая схема производства аллилхлорида приведена на рис. 19 [232]. Испаренный в аппарате 1 жидкий хлор сушат с помощью 98%-й H2SO4 в осушителе2 и направляют в хлоратор 3. Сюда же поступает предварительно подогретый до 340—360 °С в печи 15 пропилен. Хлорирование ведут при 500 °С и соотношении СзНа СЬ, равном 5 1 (мол.). Более высокое отношение невыгодно, так как увеличиваются затраты, связанные с очисткой, компримированием. [c.113]

    Ниже кратко описывается промышленный метод хлорирования олефинов (рис. 44). В специальном смесительном сопле, помещенном в подогревательную печь, перемешивают до получения однородной смеси чистый пропилен, нагретый примерно до 350—400 °С, и чистый безводный, неподогретый хлор. Во цзбежание накопления хлора и связанного с этим избыточного хлорирования пропилен пропускают через два боковых отвода, а хлор — через главную трубу. Затем реакционная смесь, содержащая пропилен и хлор (лучше всего в отдошении 5 1), поступает в реактор, представляющий собой стальной резервуар. Благодаря выделяющемуся при хлорировании теплу в реакторе устанавливается температура 500—530 °С  [c.179]

    Получение 1,2-дихлорпропапа хлорированием пропилена в жидкой фазе аналогично получению 1,2-дихлорэтана хлорированием этилена. Реакция присоединения хлора к пропилену протекает по уравнению [c.389]

    Перегонная аппаратура может быть выполнена из материалов хастеллой А и дурихлор, но чаще употребляют монельметалл или никель. Метод горячего хлорирования за последние годы в основном не изменялся, но появилось множество вариантов конструкции реактора. При этом стремились снизить образование продуктов присоединения при смешении пропилена с хлором. Например, сконструирован реактор типа циклона, позволяющий работать с более низким соотношением пропилен хлор (3 1) [13—15]. В этот реактор оба газа вводятся раздельно по касательной к противоположным сторонам циклона. Предложены также [c.181]

    Влияние температуры реакции на выход продуктов горячего хлорирования пропилена при иолъъаа соотношении пропилен хлор=4 1 (запггрихована область оптимальных температур). 1 — аллилхлорид 2 — 1,2-дихлорпропан 3 — высококипящие продукты  [c.181]

    Высокотемпературное (450—700 °С) хлорирование низкомолекулярных алифатических углеводородов, главным образом метана, этана, пропана, бутана, изобутана, этилена и пропилена, а также их хлорпроизводиых, проходит уже не как чистая реакция замещения, а большей частью как расщепляющий и строящий крекинг. В случае метана преобладает соединение обломков j с образованием иерхлорэтилена, в случае пропанов и пропиленов — расщепление с образованием четыреххлористого углерода и иерхлорэтилена, в случае этапов и этиленов в зависимости от условий реакции могут получаться различные продукты [183—186]. [c.201]

    Пропан. Пропан встречается в больших количествах в природных газах, газах крекинга нефти, в газах, образующихся при перегонке нефти и синтезе бензина по Фишеру—Тропшу (см, ниже). Он может быть синтезирован из иодистого пропила или иодистого изопропила путем восстановления омедненным цинкрм. Этот углеводород го 5Ит более сильно светящимся пламенем, чем этан. Пропан является исходным продуктом для многочисленных синтезов, осуществляемых в широком масштабе в промышленности. Хлорированием его получают 1-хлор-, 2-хлор-, 1,2-дихлор- и 1,3-дихлор-пропан (см. талоидпроизводные), нитрованием — нитропарафины, исходные продукты для получения аминов. При дегидрировании пропана образуется пропилен (см. ниже), из которого в промышленности получают хлористый аллил, глицерин, изопропиловый спирт и т. д. Наконец, из пропана и пропилена путем полимеризации получают углеводороды с разветвленной углеродной цепью (2-,метилпентан, 2,3-диметилбутан и т. д ), служащие добавками к авиационному бензину (повышение октанового числа, см. стр. 87). [c.40]

    В обширных исследованиях реакций хлорирования простейших олефинов Гролл, Харн, Раст и Воган показали, что при 125 —135° этилен, пропилен и бутен-1 в реакцию не вступают. Реакция не наступает до тех пор, нока температура не снизится до уровня. Достаточного для образования жидкой фазы. [c.365]

    При этом пропилен нагревают приблизительно до 400 и затем смешивают с неподогретым хлором в специальном сопле [13] так, чтобы но происходило выделения сажи. Сажа может образовываться вследствие плохого смешивания газов, которое влечет за собой реакцию глубокого хлорирования в точках, где концептрация хлора высока. В отсутствие специальных смесителей выделение сажи наблюдается в известной степени даже тогда, когда зглеводород берут в значительном избытке. [c.357]

    Пропилен должен быть весьма чистым, так как в условиях его хлорирования пропап (наиболее во Можт[а [ прид1есь) легко переходит в хлор-производные пропана, из которых 1-хлорнропан (т. кин. 46,4 ) нельзя отделить ректификацией от х.пористого аллила. Ниже приведены результаты высокотемпературного хлорирования пропилена на опытной установке. [c.358]

    В реакторе хлорирования пропилена с ВЗУ была реализована следующая схема процесса хлорирования. Через винтовые каналы внешнего ВЗУ подавался пропилен в требуемом соотношении к хлору. Причем в конструкции ВЗУ предусмотрена минимальная толщина простенков между каналами, что обеспечивало ввод пропилена в виде сплошной ленты с минимально возможным промежутком. Хлор вводился через внутреннее ВЗУ, винтовые каналы которого были совмещены с внешними винтовыми каналами, что обеспечивало движение струй хлора по струям пропилена и исключало их проникновение в межструйное пространство струй пропилена. [c.255]

    Более важным является способ, который недавно был технически разработан в нефтяной промышленности (Гролл и Хэрне). По этому способу исходным веществом. аля получения глицерина является пропилен газов крекинга. При обработке его хлором происходит обычное присоединение по двойной связи. Одиако при высоких те.чперату-рах хлорирование можно провести таким образом, чтобы в1 есто присоединения (дихлор-пропан при 400—500° уже неустойчив) произошло замещение и именно при углеродном атоме, соединенном простой связью при этом получается хлористый аллил, который затем известным способом через оба хлоргидрина (по Леннарту Смиту образуется около 70% и около 30% а,а -дихлоргидрина) может быть превращен в глицерин  [c.400]

    Хлорирование применяется также для модификации малонена-еыщеиных сополимерных эластомеров (бутилкаучук, тройной эти-лен-пропилен-диеновый эластомер), что позволяет улучшить прие- [c.281]

    Оптимальная длительность контакта реагирующих газов ири температуре около 500° составляет 0,35—0,45 сек. Реакция хлорирования сопровождается выделением тепла — 26,7 ккал1г-молъ.Та.кк.АК при высокой температуре пропан может также хлорироваться, то пропилен должен быть по возможности свободным от пропана, чтобы избежать непроизводительных затрат на его хлорирование. Экономически приемлема концентрация пропилена не ниже 95%-ной. [c.280]

    Термодинамические функции реакций образования хлористого аллила хлорированием пропилена, 1,2-дихлорпропана присоединением хлора к пропилену, монохлорпропиленов пиролизом дихлорпропана и других хлорпроизводных пропилена, полученные расчетным путем, указанным в разделе хлорпроизводных Сг, приведены в табл. VI.8. [c.385]

    Хлористый аллил получается хлорированием 98%-ного пропилена при 500—520° и молярном отношении хлора к пропилену 1 4 выход хлористого аллила по хлору 80—85%. Побочными продуктами при хлорировании пропилена получаются 1,2-дихлорпропан, 1,3-дихлорпропилен и другие. Смесь 1,2-дихлорпропана и 1,3-дихлорпропилена, так называемая ДД, используется в качестве почвенного фумиганта. Основные работы по получению хлористого аллила хлорированием пропилена опубликованы в 1939 г. [80] и в начале 40-х годов [81]. [c.388]

    Получают А. хлорированием пропилена при 500°С соотношение пропилен хлор = 5 1 выход 80% по хлору. Применяют А. гл. обр. для произ-ва эпихлоргидрина, глицерина, аллилового спирта, а также разл. аллиловых эфиров, аллиламина, циклопропана, аллилсахарозы и др. [c.102]

    При пуске первой установки синтеза хлористого аллила было выявлено несовершенство узла изотермической абсорбции. В гидравлических расчетах специалисты фирмы, но всей вероятности, перепутали нротивоточное движение продуктов между аппаратами с прямоточным внутри них. В результате пропускная способность абсорбции но хлористому водороду и пропилену, а также соляной кислоте, потоки которых двигались навстречу друг другу между аппаратами, оказалась равной 30-36% от проекта. В то же время смесители хлорирования пропилена не могли эксплуатироваться продолжительное время нри нагрузках ниже 60% от проекта. На малых скоростях смешения хлора и пропилена они забивались. Специалисты завода предложили пересчитать необходимую поверхность теплообмена изотермических абсорберов и нри возможности уменьшить их высоту. В результате было демонтировано 60% установленных графитовых блоков, произведена нереобвязка линий соляной кислоты и паров. На оставшихся 40% блоков таким образом были решены вопросы гидравлики, и пропускная способность узлов абсорбции выросла до 120% от проектной. [c.14]


Смотреть страницы где упоминается термин Пропилен хлорирование: [c.176]    [c.102]    [c.350]    [c.358]    [c.358]    [c.381]    [c.82]    [c.101]    [c.588]    [c.589]   
Органическая химия (1968) -- [ c.90 ]

Общая химическая технология органических веществ (1966) -- [ c.184 ]

Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.519 ]

Общая химическая технология органических веществ (1955) -- [ c.170 ]

Технология нефтехимического синтеза Издание 2 (1985) -- [ c.434 , c.435 ]

Теория технологических процессов основного органического и нефтехимического синтеза Издание 2 (1975) -- [ c.146 , c.219 , c.358 ]

Технология нефтехимического синтеза Часть 2 (1975) -- [ c.112 ]

Органическая химия Издание 2 (1976) -- [ c.87 , c.120 , c.179 ]

Органическая химия Издание 3 (1980) -- [ c.80 , c.140 , c.167 ]

Общая химическая технология Том 2 (1959) -- [ c.424 ]

Технология нефтехимических производств (1968) -- [ c.276 ]




ПОИСК





Смотрите так же термины и статьи:

Аномальное хлорирование олефинов нормального строении (получение хлористого аллила высокотемпературным хлорированном пропилена)

Аномальное хлорирование олефинов нормального строения (получение хлористого аллила высокотемпературным хлорированием пропилена)

Вихревой реактор хлорирования пропилена

Пропилен Пропей хлорирование

Пропилен Пропен хлорирование

Пропилен аномальное хлорирование

Пропилен сульфатирование хлорирование

Разработка технологической схемы реакционного узла процесса гидроГ хлорирования пропилена

Тихий разряд как активатор при хлорировании метана на пропилен

Хлорирование окислительное пропилена

Хлорирование пропилена Присоединение хлора по двойной свяаи

Хлорирование пропилена и получение синтетического глицерина



© 2024 chem21.info Реклама на сайте