Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парафин нефтяной окисление

    Сырьем для окисления служит свечной парафин нефтяного происхождения с т. плавл. 52° С. Окисление ведется в специальной приборе (рнс. 90). [c.502]

    Парафины, получаемые из нефти как целевой продукт, в консистентных смазках почти не применяются, а идут на окисление с целью изготовления синтетических жирных кислот (см. стр. 683) или используются для других целей. Они входят в состав петролатумов и содержатся во всех петролатум-ных смазках. В табл. 12. 10 приведены основные свойства товарных парафинов (ГОСТ 784—53) и синтетического (ВТУ НП 471—54), а в табл. 12. И — свойства парафина нефтяного, применяемого для синтеза (окисления). [c.675]


    Молекула парафина при окислении разрывается в разных местах и потому получается смесь кислот, которые разделяются на фракции. При производстве мыла используют две фракции Сю— ie и С17—С20. В хозяйственное мыло синтетические кислоты вводят в количестве 35—40 %. Для производства мыла также применяют нафтеновые кислоты, выделяемые при очистке нефтепродуктов (бензина, керосина и др.). С этой целью нефтепродукты обрабатывают раствором гидроксида натрия и получают водный раствор натриевых солей нафтеновых кислот (монокарбоновые кислоты ряда циклопентана и циклогексана). Этот раствор упаривают и обрабатывают поваренной солью, в результате чего на поверхность раствора всплывает мазеобразная масса темного цвета — мылонафт. Для очистки мылонафт обрабатывают серной кислотой, т. е. вытесняют из солей сами нафтеновые кислоты. Этот нерастворимый в воде продукт называют асидолом или асидол-мылонафтом. Непосредственно из асидола можно изготавливать только жидкое или, в крайнем случае, мягкое мыло. Оно имеет нефтяной запах, но зато обладает бактерицидными свойствами. [c.96]

    Возможность замены пищевых жиров, применяемых для технических целей, синтетическими моющими средствами в большой степени определяется ресурсами нефтяного сырья. Одним из наиболее цепных видов сырья для получения жирных кислот и спиртов, идущих на производство моющих средств, является парафин с числом углеродных атомов 10—20, т. е. с молекулярным весом 150—300 [1]. На базе такого парафина путем окисления получают жирные кислоты и спирты, которые успешно используют в производстве туалетного и хозяйственного мыла, солидола, поверхностно-активных веществ, моющих и смачивающих средств [2]. Спирты с числом углеродных атомов выше 20 применяют для синтеза восков [3]. [c.141]

    Синтез дикарбоновых кислот на основе углеводородов особенно привлекателен в связи с доступностью и дешевизной нефтяных парафинов. Технология окисления парафинов в монокарбоновые кислоты с целью получения моющих средств освоена в промышленном масштаба. Наибольший выход монокарбоновых кислот окислением парафинов достигается при использовании бедных кислородом газов (3—4% кислорода) в присутствии 5—7%-ной [c.159]

    Парафины нефтяных фракций представляют собой смесь чистых углеводородов, свободных от олефиновых, нафтеновых, ароматических углеводородов и других соединений они служат сырьем для получения разнообразных кислородсодержащих веществ, необходимых для производства растворителей, моющих веществ и пластификаторов. Прямым путем получения этих кислородсодержащих соединений является окисление парафиновых углеводородов воздухом при умеренных температурах (100 —150° С) но при этом одновременно получаются кислоты, спирты, оксикислоты, кетоны, лактоны и другие соединения. В связи с таким разнообразием состава конечных продуктов в процессе окисления предусматриваются операции разделения и очистки продуктов, что приводит к большим эксплуатационным затратам. Тем не менее конечные продукты дешевле полученных из жиров и из сельскохозяйственных продуктов. Сырье выделяется из керосина (116, 117), из дизельных топлив, из легких и тяжелых масел, а также из нефтяного воска. [c.110]


    Синтетические жирные кислоты получают жидкофазным окислением нефтяного, буроугольного или синтетического парафинов кислородом воздуха в присутствии катализатора. Окисленный парафин омыляют водным раствором щелочи, переводя кислоты в соли. Непрореагировавший парафин и нейтральные кислородсодержащие вещества (неомыляемые) отделяют от раствора солей мыла) и повторно возвращают в смеси с исходным парафином на окисление. Мыла, освобожденные от неомыляемых веществ, разлагают минеральной кислотой и выделяют смесь свободных жирных кислот. Свойства этих кислот и пути их использования в [c.5]

    В смеси с другими дикарбоновыми кислотами адипиновая кислота образуется при окислении различных органических продуктов твердых парафинов, нефтяных фракций, сланцев, жирных кислот и т,д. Сотрудники Ленинградского технологического института им. Ленсовета изучали процесс воздушного окисления нефтяных оксикислот [321-323], Исследовалось влияние различных факторов на выход и состав дикарбоновых кислот. Лучшие результаты были получены при температуре 120-175°- и давлении 20-40 атм. Выход сырых дикарбо- [c.138]

    Следует отметить, что в некоторых случаях нефть используют параллельно с каменным углем или растительным сырьем. Так, например, в США этиловый спирт производят как путем брожения, так и через этилен из нефти в той же стране формальдегид получают окислением низших парафинов нефтяного происхождения и из каменного угля через окись углерода и метиловый спирт. [c.7]

    Если парафин при окислении образует искусственные кислоты со свойствами, близкими к свойствам кислот, выделенных из природных жиров, то окисление таких нефтяных углеводородных смесей, как керосин, соляровое масло и др., приводит к по,лучению совершенно новых и еще не изученных кислородсодержащих соединений. [c.180]

    Недостатком кйк окрасочных, так и мастичных покрытий является небольшое проникание химически стойкого материала в глубину бетона. Поэтому наиболее надежной защитой свай является пропиточная изоляция, при которой наружный слой бетона свай приобретает гидрофобное свойство или становится по свойствам близок к бетонополимерам. Метод пропитки давно применяется для улучшения стойкости кирпича, асбестоцемента, бетонных изделий. Сущность пропиточной изоляции состоит в том, что различными способами (диффузионным, капиллярным подсосом, контракционным, гидротермальным, гидростатическим, под давлением, под вакуумом и др.) строительный элемент насыщают антикоррозионным материалом на определенную глубину. В жидком виде он проникает в поровое пространство бетона, из которого вытесняется вода или воздух. Вытесненный объем заполняется пропиточным веществом, после чего конструкция становится химически стойкой. Для железобетонных свай наибольшее применение в качестве пропиточного материала нашли нефтяные окисленные битумы, петролатум, смеси битумов с петролатумом, парафином, продукты перегонки нефти (асфальты деасфальтизации). Применяются также полимерные материалы — метилметакрилат, низкомолекулярный полиэтилен, фурфурол, мономер ФА и др. [36, 55, 62]. [c.106]

    Нефтяной парафин представляет собой смесь углеводородов метанового ряда со значительным преобладанием молекул нормального строения. Мягкий парафин (температура плавления 40—42°) применяется главным образом в спичечной промышленности, для пропитки бумаги, в кожевенной и текстильной промышленности и т. д. Твердые парафины (температура плавления 50—52°) находят наиболее широкое применение в свечном производстве, а также для некоторых областей пропитки. Из процессов химической переработки парафинов в Германии наибольший интерес представляет производство жирных кислот на основе твердых парафинов (см. главу VI Окисление парафиновых углеводородов , стр. 432, или раздел Исходное сырье для процесса окисления парафина , стр. 444). [c.49]

    Весьма активными депрессаторами являются продукты окисления твердых нефтяных углеводородов — парафина и особенно петролатума. Использовать окисленный петролатум в качестве депрессатора, а также добавки, изменяющие кристаллическую-структуру депарафинируемых растворов, впервые предложил Н. И. Черножуков, и окисленный петролатум успешно применяли одно время в промышленных условиях. [c.73]

    Стимулом для развития промышленных процессов окисления простых парафинов до различных алифатических кислородных соединений послужила относительно низкая их стоимость. Эти углеводороды в больших количествах производятся нефтеперерабатывающими заводами, а также легко могут быть получены из природного газа. Углеводороды от пропана до пентана можно получить в достаточно чистом виде путем фракционирования природного бензина и сжиженного нефтяного газа, получаемого на газобензиновых установках. Эти установки могут также давать в большом количестве этан. В случае необходимости этан можно получать путем низкотемпературной абсорбции или конденсацией сухого газа. Метан и этан можно транспортировать посредством трубопроводов, сжиженные углеводороды посредством трубопроводов, в цистернах и океанских танкерах. [c.341]


    Отсутствие в настоящее время свободных ресурсов очищенных нефтяных парафинов привело к необходимости его временной замены синтетическим парафином (синтином). Материальный баланс окисления синтина в условиях опытной установки приводится в табл. 49. [c.165]

    При окислении на той же установке фракции 275—320° С1 нефтяного жидкого парафина был получен более низкий выход дистиллированных жирных спиртов, равный 54,2% в расчете на исходный парафин [87]. Снижение выхода спиртов при окисле- [c.165]

    Производство химических продуктов из нефтяного сырья основано на большой доступности последнего и на том, что низшие углеводороды легко вступают в основные химические реакции, такие как окисление, галогенирование, нитрование, дегидрирование, присоединение, полимеризация, алкилирование и т. д. Низкомолекулярные парафины и олефины, содержащиеся в природных и нефтезаводских газах, а также простые ароматические углеводороды до настоящего времени представляли с этой точки зрения наибольший интерес, потому что только здесь индивидуальные соединения легко могут быть выделены и переработаны. Можно получить большое число соединений, и многие из них в настоящее время производятся промышленностью. [c.575]

    Объектом многочисленных исследований было получение жирных кислот из нефтяного сырья (особенно парафина) для мыловарения или производства синтетических жиров [314—318]. Производство синтетических жирных кислот вызывает особый интерес в условиях нехватки натуральных жиров (например, в военное время). При невысоких температурах и атмосферном давлении реакция окисления парафина воздухом протекает очень медленно. В реакционной смеси окисления парафина (температура плавления -Ь55° С) при 110° С даже через 280 часов после начала процесса было обнаружено очень мало продуктов окисления [319, 320]. [c.586]

    В нефтехимической технологии сравнительно немного процессов синтеза с получением целевых продуктов (продуктов потребления), использующих в качестве сырья газовые или нефтяные фракции (смеси углеводородов). Среди них — некоторые процессы производства моющих веществ типа алкиларилсульфонатов из крекинговых бензинов, эмульгаторов из керосина или газойля, жирных кислот окислением смеси твердых или жидких парафинов, нафтеновых мыл из керосиновых и масляных фракций, крезолов из бензиновых фракций (крекинга) и т. д. [c.46]

    Для приготовления полиметакрилата В применяются синтетические спирты Ск,— С12, получаемые гидрированием бутиловых эфиров жирных кислот, от окисления нефтяного парафина. [c.162]

    Нитрованное нефтяное масло Окисленный петролатум Парафин Алюминиевое мыло синтетических жирных ки слот [c.711]

    Впервые перерабатывать парафин в СЖК начали в Германии. Окисление парафина осуществлялось на трех заводах [12]. В качестве сырья использовали главным образом твердый парафин, который образовывался при производстве синтетического жидкого -топлива из окиси углерода и водорода на заводе в Оппау перерабатывали также парафин, получавшийся-при гидрировании бурых углей, и нефтяной парафин. [c.12]

    Парафин и парафиновые композиции могут найти широкое применение для производства усовершенствованных удобрений [77] с регулируемым выделением азота. Обычно примерно 25—50% азота, применяемого при удобрении полей, теряется вследствие выщелачивания. Так, в США стоимость потерь удобрений в год оценивается в 150—300 млн. долл. В усовершенствованные удобрения вводят нефтяной парафин, который создает влаго-и водонепроницаемый слой на поверхности частиц удобрения. В качестве удобрения предлагается использовать карбамид. Тонко раздробленный карбамид вводят в расплавленный парафин, затем смесь охлаждают. Парафин имеет температуру плавления 51,7— 65,6°С. Введение в смесь окисленной полимеризованной древесной смолы уменьшает комплексообразование парафина и карбамида и улучшает качество удобрения. С целью повышения вязкости смеси к ней добавляют 2 вес.% битума. Наилучшее удобрение содержит 55—65 вес.% карбамида. [c.20]

    Необходимо учесть также склонность близких гомологов парафинов образовывать непрерывный ряд твердых растворов. Отсюда становится ясным, что выделение индивидуальных углеводородов даже из наиболее простых и однородных но строению парафинов весьма затруднено, и к нему следует прибегать лишь в редких случаях, когда для специальных целей требуется доводить парафиновое сырье до наиболее глубокой степени разделения, вплоть до выделения отдельных индивидуальных углеводородов. Значительно проще и технически сравнительно легко осуществимо выделение узких фракций нормальных парафинов, содержащих группы углеводородов, близких но молекулярным весам. Более детальное изучение образцов технических сортов твердого парафина, вырабатываемого нефтяной промышленностью, позволило установить, что в них обычно, преобладают несколько смежных гомологов, содержащих в молекуле от 24 до 30 атомов С. Для технического применения парафина, а также для использования его в качестве химического сырья (в реакциях окисления, хлорирования и др.) такие узкие фракции вполне применимы, если только они хорошо очищены от примеси неуглеводородного характера (например, сернистых и кислородных соеди- [c.30]

    Чем больше маслянистых примесей в технических сортах парафина нефтяного или буроугольного происхождения, тем они менее пригодны для окисления. В оксидате-сырце присутствует очень много примесей, не ра1СТ1Воримых в бензине. Эти масла состоят большей частью из нафтенов, которые ХОТЯ и окисляются, но дают вязкие кислоты и темноокрашенные мыла с неприятным залахом. Таким образом, большое количество маслянистых примесей весьма нежелательно. [c.447]

    Каменные угли. Следует иметь в виду, что они содержат до 0,4% битумных веществ, -сходных с парафином нефтяного происхождения. Эти вещества заметно улетучиваются при 250°С. Витринит типичных каменных углей (антракоид) начинает диссоциировать около 320° С, о чем свидетельствует его растворение при этой температуре в антраценовом масле. Максимум растворимости достигается при 350° С. При более высокой температуре растворимость уменьшается, что указывает на одновременное протекание реакций ассоциации. Существенно, что при этом почти не выделяются летучие продукты разложения. Они появляются только в том случае, если уголь был затронут окислением состоят они в основном из воды. [c.91]

    Для инвертных эмульсий используют олеофильные эмульгаторы — различные нефтехимические продукты, например окисленный парафин, нефтяные контакты, а также ионогенные ПАВ, эфиры многоатомных спиртов и ненасыщенных жирных кислот и ряд других продуктов, число которых непрерывно растет. Как пра вило, одним каким-либо реагентом не удается обеспечить стабилизацию нефтяных и инвертных растворов. Многофункциональность действия обеспечивает применение нескольких, взаимодополняющих эмульгаторов. В рецептурах инвертных эмульсий стабилизаторами являются асфаш.то-смо-листые вещества битумов, а также высокодисперсная твердая фаза, в частности аминированные бентониты и добавки сажи, графита, извести. Для повышения тиксотропии и устойчивости инвертных эмульсий и нефтяных растворов, особенно при нагревании, используются различные мыла, вещества гидрофобизирующие и ингибирующие твердую фазу и препятствующие обращению эмульсий. Для этих цедей [c.208]

    В смеси с другими дикарбоновыми кислотами адипиновая кислота образуется при окислении парафинов, нефтяных фракций сланцев, жирных кислот и т. д. При двухстадийном окислении крупнокристаллического парафина получена смесь дикарбоновых кислот, содержащая янтарную, глутаровую, адипиновую, пимели-новую, пробковую и высшие кислоты. На первой стадии окисление осуществляют кислородом или воздухом до образования продукта с числом омыления 300—600. После промывки водой водную фазу вторично окисляют азотной кислотой. Из оксидата экстракцией высшими спиртами выделяют высшие дикарбоновые кислоты, а из остатка после отгонки азотной кислоты, воды и летучих кислот выкристаллизовывают остальные дикарбоновые кислоты [164]. [c.102]

    Для получения присадок ДФ-1, ДФ-4 и ДФ-5 использовались технические высокомолекулярные спирты, получённые прямым окислением фракции парафина (нефтяного или полученного оксосинтезом), выкипающей в пределах330—390° для нолучения присадкиДФ-2—аналогичные спирты, полученные окислением фракции синтетического парафина, выкипающей в пределах 270—330°. Молекулярный вес этих спиртов соответствует 20— С24— С16— С20. Ряд присадок был получен на основе технических [c.386]

    Кубовые остатки синтетических жирных кислот (КОСЖК). В- настоящее время основным жирозаменителем являются синтетические жирные кислоты СлНгпСООН. Синтетические жирные кислоты получают жидкофазным окислением нефтяного, буроугольного или синтетического парафинов кислородом воздуха в присутствии катализаторов. Нефтяной парафин получают из парафинистых нефтей, которые в зависимости от месторождения, содержат от 7 до 12% парафина. Окисленный парафин омыляют водным раствором щелочи, переводя кислоты в соли. Непрореагировавший парафин и нейтральные кислородсодержащие вещества (неомыляемые) отделяют от раствора солей (мыла) и возвращают в смеси с исходным парафином на окисление. Мыла, освобожденные от неомыляемых веществ, разлагают минеральной кислотой и выделяют смесь свободных жирных кислот. [c.60]

    Окисление парафина с целью получения жирных кислот получило большое развитие в Германии во время второй мировой войны. В качестве исходного материала здесь применяют или очищенный нефтяной парафин, или что дает более благоприятные результаты, буроугольпый нарафип (ТТН-процесс), или синтетический парафин, полученный процессом Фишера-Тропша. [c.162]

    Нефтяной парафин должен предварительно очень хорошо очищаться, чтобы удалить содержащиеся и нем природные ингибиторы окис гения, которые могут или полностью затормозить процесс окисления илн спльно его замедлить. Такими ингибиторами являются в первую очередь серусо-держащие соединения и фенолы, которые можно удалить, например, очисткой разбавленной азотной кислотой или безводным хлористым алюминием. [c.162]

    Исследуя кислоты, полученные при окислении парафиновых углеводородов изостроения, можно составить представление о пунктах окислительной атаки кислорода. Последний действует преимущественно на точку разветвления, иначе говоря, на третичный атом водорода, В результате отщепления боковых цепей образуются в основном кислоты с прямой цепью. Тем не менее парафины с сильно разветвленным угле- родным скелетом продолжают оставаться непонгодными для промышленных целей сырьем [42], При их окислении получают главным обраэом низкомолекулярные и более глубоко окисленные карбоновые кислоты с числом атомов углерода меньше 12, не говоря уже о значительных количествах кислот с разветвленным скелетом. Эти кислоты обладают неприятным запахом и неудовлетворительным моющим действием. Технические нефтяные дистилляты, хотя и обогащенные парафинами, непригодны для получения жирных кислот, предназначенных для мыловарения, так как содержат нафтеновые и ароматические углеводороды, а также другие циклические соединения. [c.445]

    Хорошим сырьем для промышленного получения высших жирных кислот деструктивным окислением являются буроугольный и нефтяной парафины. Однако ресурсы буроугольного парафина слишком малы. Если даже весь этот парафин будет использован для производства жирных кислот, заметного удозлетворения потребности в них не произойдет. [c.445]

    Нефтяной парафин производят в Германии в небольших количествах, так что остается только рассчитывать на синтетический парафин, тем более что последний, как это уже отмечалось раньше, особенно подходит для окисления и доступен в любых количествах. Если при работе по методу Фишера—Тропша при нормальном давлении в том впде, как он был впервые внедрен в промышленность, получается всего 5—6% парафина, кипящего выше 320°, то при синтезе, проводимом под средним давлением (10 ат), этого парафина получается в 4— [c.445]

    Процесс проводят практически до полного окисления всех исходных углеводородов под давлением 10—20 ат и при 95—175° в зависимости от исходного сырья и желаемого продукта окисления. Кислород воздуха расходуется при этом почти нацело. В качестве катализаторов пользуются солями металлов жирных кислот или высокомолекулярными спиртами и кетонами от предыдущих операций. Продукты окисления омыляют и перерабатывают, как обычно. Недавно Кирк и Нельсон установили [106], что окисленный нефтяной парафин представляет втадающуюся по свойствам основу для смазок. Они окисляли парафин при 135 воздухом в присутствии смеси стеарата цинка и пиролюзита до кислотного числа 70—90 и соответственно до числа омыления 140— 180. Перед омылением добавляли определенное количество жира или насыщенных жирных кислот. Особенные преимущества дает применение натрового или литиевого мыла [107]. Почти половина оксидата состоит из кислот, а другая половина из спиртов и кетонов [108]. [c.476]

    Основными компонентами нефтяных масел являются углеводороды смешанного строения, содержащие одновременно структурные элементы нафтено-парафинового, парафино-ароматического или парафино-нафтено-ароматического характера. Углеводородов, содержащих только нафтеновые или ароматические циклы и лишенные боковых алкильных цепей, в маслах практически нет. Отсутствуют в товарных маслах и нормальные парафиновые углеводороды, так как при производстве масел обычно применяется глубокая депарафинизацня. Кроме углеводородов в маслах имеются и разнообразные гетероорганические соединения, содержащие серу, кислород, азот, а также различные металлы. Все это вносит большую сложность в изучение зависимости эксплуатационных свойств масел (в том числе и стабильности против окисления) от их химического состава. [c.65]

    Окисление нефтяного парафина исследовано Коллином, иденти-фшщовавшим алифатические кислоты изостроения. [c.99]

    Вкделенные углеводороды идентифицировали, т. е. устана-влива,ти их идентичность с соответствующими индивидуальными углеводородами. Многие индивидуальные углеводороды, не нолу-ченный до того времени в чистом виде, были специально синтезированы для сравнения с выделенными из нефти. Нефтяной углеводород считался индивидуальным соединением, если физические свойства его не изменялись и после того, как некоторая часть его удалялась химической обработкой, например путем окисления, сульфирования или нитрования, и если в результате дейст1ия реагентов углеводород нревращался в химическое соединение с характерными свойствами. Методы химической идентификации парафинов и нафтенов, разработанные школой Марковников , отличаются большим разнообразием. Отметим некоторые из пи с. [c.76]

    Тяжелая часть нефти представляет собой сложную смесь неидентифицированных углеводородов и гетеросоединений самого разнообразного строения. Для решения практических задач определяют содержание отдельных классов или групп веществ асфальтенов, силикагелевых смол и масел. Среди последних различают соединения парафиновой, нафтеновой и ароматической основы. Кислород воздуха, взаимодействующий с нефтяным сырьем, расходуется в различных реакциях окисления. Часть кислорода образует воду и диоксид углерода, другая — химически связывается компонентами сырья. С повышением температуры окисления увеличивается доля кислорода, расходуемого на образование воды. В целом процесс окисления характеризуется переходом масел в смолы и смол в асфальтены. В масляной части наибольшая скорость окисления наблюдается у тяжелых ароматических углеводородов, в то время как парафино-нафтеновая группа углеводородов почти не затрагивается. [c.287]

    С одной стороны, неразветвленные парафины являются наиболее легко застывающей частью нефтяных продуктов, в том числе дизельных и реактивных топлив, смазок и т. д. Вы.деление хотя бы основного количества н-парафинов является необходимым условием возможности надежного использования этих продуктов при низких температурах. С другой стороны, именно н-парафины в последнее время приобретают значение как исключительно ценный вид сырья для ряда важных технических синтезов получения синтетических жирных кислот окислением, синтеза белково-витаминных концентратов, дегидрирования в линейные моиоолефины и т. д. Вследствие этого установки карб- [c.314]

    Систематические исследования по выяснению влияния хими ческой природы нефтяного сырья и условий окисления на состав-и свойства окисленных битумов [42—49] показали, что глубина отбора дистиллятных фракций заметно сказывается как на составе гудрона, так и на характере изменения и глубине термоокислительного превращения последнего. Детальное исследование элементного и компонентного составов тяжелых нефтяных остатков, полученных различными вариантами термической обработки, позволило выяснить характер влияния на направление и глубину превращения их в процессе производства. Полученные экспериментальные данные дали возможность составить общее представление об основных направлениях химических изменений составляющих битум компонентов в процессе его производства в заводских условиях. Чем более жесткой высокотемпературной обработке подвергаются тяжелые нефтяные остатки, тем большую роль в стадии окисления играет углеводородная часть битума. Это видно из данных, характеризующих количественное и качественное изменения в составе углеводородов. При переходе от гудрона к окисленному битуму (БН-У) содержание углеводородов снижается с 65—70 до 40—46%. При этом в окисленном битуме практически отсутствуют парафино-циклопарафиновые углеводороды, а среди ароматических углеводородов преобладают структуры, содержащие в молекуле ди- и нодиконденсированные ароматические ядра. Жидкие продукты окисления ( отдув ) битума на первой стадии окисления (до БН-1П) состоят из низкомолекулярных кислородных производных углеводородов преимущественно алифатической природы. [c.133]

    Ресурсы нефтяных кислот ограничены и не могут обеспечить возрастающий спрос, в частности содержание их в наиболее высокодебитных сернистых нефтях незначительно. Поэтому в дальнейшем химическая промышленность должна ориентироваться на использование синтетических нефтяны кислот, получаемых каталитическим окислением циклоалканов, деароматизированных нефтяных фракций с пределами перегонки от 170—180 до 250—260 °С. Для производства НРВ могут применяться и синтетические жирные кислоты, получаемые окислением парафина С]— je [140, 141]. [c.346]


Библиография для Парафин нефтяной окисление: [c.102]   
Смотреть страницы где упоминается термин Парафин нефтяной окисление: [c.553]    [c.144]    [c.444]    [c.336]    [c.67]   
Основы технологии нефтехимического синтеза Издание 2 (1982) -- [ c.114 , c.115 , c.118 ]




ПОИСК





Смотрите так же термины и статьи:

Нефтяные парафины

Окисление парафина



© 2024 chem21.info Реклама на сайте