Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлор получение по Дикону

    В 1867 г. Г. Дикон разработал получивший всемирную известность хлорный процесс—получение хлора окислением НС1 воздухом над медными соединениями. В 1867 г. А. Гофман получил впервые формальдегид окислением метилового спирта воздухом над платиной. В 1871 г. М. Г. Кучеров открыл замечательную реакцию гидратации ацетилена разбавленной серной кислотой в присутствии ртутных солей, которая лежит в основе многих каталитических превращений ацетилена, его гомологов и производных. В 1875 г. Кл. Винклер разрешил, наконец, проблему каталитического окисления SO, в SO3 воздухом в присутствии платинового катализатора, разработав промышленный способ контактного синтеза серной кислоты. Этот вопрос имеет многолетнюю интересную историю, начиная с работ И. Деберейнера и патента П. Филлипса в 1831 г., рекомендовавшего также платиновый катализатор, по потерпевшего неудачу из-за неумения проводить очистку сернистого газа от контактных ядов. В 1877 г. М. М. Зайцев опубликовал свои исследования по восстановлению различных органических соединений водородом в гетерогенной фазе над платиной или палладием, предвосхитив по существу методику гидрирования, разработанную гораздо позднее. В том же 1877 г. Н. А. Меншуткин начал свои классические исследования по приложению химической кинетики к органическим ссединениям в области изучения скоростей этерификации различных карбоновых кислот спиртами. В 1878 г. А. М. Бутлеров открыл реакцию уплотнения олефинов под действием серной кислоты, что явилось преддверием к синтезу высокомолекулярных соединений и процессов алкили-рования, имеющих сейчас огромное значение. Г. Г. Густавсон провел ряд исследований по каталитическому действию галогенидов алюминия на органические соединения, несколько опередив работы Ш. Фриделя и Дж. Крафтса. [c.15]


    Процесс Дикона (производство хлора, применяемого при получении соды по Леблану) — полухлористая медь применяется как катализатор Продукты процесса Леблана, хлористый водород и серная кислота, последняя ингибирует реакцию или отравляет катализатор из полухлористой меди предложен метод очистки газообразного хлористого водорода (1883) [c.339]

    Ц начале развития промышленного производства хлора его получали окислением соляной кислоты методами Дикона или Вельдона. В дальнейшем эти методы были вытеснены электрохимическим методом производства хлора и каустической соды. Возможность получения одновременно с хлором такого ценного продукта, как каустическая сода, способствовала быстрому развитию электрохимических методов производства хлора. [c.265]

    Химические методы получения хлора из соляной кислоты основаны на окислении хлористого водорода кислородом или воздухом (на катализаторе) или же азотной кислотой . Усовершенствование старого метода окисления хлористого водорода кислородом воздуха, по Дикону, проводилось в направ- [c.268]

    Химические методы получения хлора окислением соляной кислоты использовались в начале развития хлорной промышленности. Хлор был впервые получен Шееле окислением соляной кислоты двуокисью марганца. Эта реакция лежит в основе метода Велдона, предусматривавшем регенерацию двуокиси марганца. Позже был разработан метод Дикона, основанный на окислении хлористого водорода кислородом воздуха или чистым кислородом. [c.303]

    Мощный толчок в развитии учения о катализе оказало его промышленное применение. Можно указать, нанример, на каталитическое получение серной кислоты в камерах или на каталитическое окисление сернистого газа в серную кислоту на платинированном асбесте (1855), на каталитическое получение хлора (но Дикону) и на проблему получения связанного азота, решенную уже в XX столетии. [c.444]

    Несмотря на большое число публикаций, посвященных окси-хлорированию этилена, мнения авторов относительно кинетики и механизма этой реакции противоречивы. Реакция оксихлорирования этилена протекает при температурах порядка 200— 230°С ( =63 кДж/моль), в то время как для реализации реакции Дикона необходима температура 350—400 °С ( = = 117 кДж/моль). Катализирует реакцию оксихлорирования этилена хлорид меди, причем хлорирующим агентом является сам хлорид меди [116], а не хлор, полученный по реакции Дикона  [c.43]


    В одном из процессов получения хлористого винила этилен взаимодействует с хлором с образованием этилендихлорида, который при пиролизе дает хлористый винил и НС1. Если при этом не иметь источника ацетилена для получения дополнительного количества хлористого винила по реакции ацетилена с НС1, то в винилхлоридном процессе НС1 теряется. Однако процесс оксихлорирования применяют все чаше и чаще с целью утилизации НС1 в модифицированном процессе Дикона и полу- [c.317]

    Работа воспроизводит один из первых промышленных методов получения хлора, применявшийся в XIX в. и известный под названием синтеза Дикона. [c.125]

    Первым промышленным производством, в котором был использован гетерогенный катализ, явился процесс Дикона (получение хлора) [c.179]

    Реакция Дикона для получения хлора  [c.380]

    При производстве хлора по способу Дикона, таким образом, не расходуется ничего, кроме хлористого водорода и в отличие от способа Вельдона не получается никаких отходов. Но не в этом главное принципиальное отличие способа Дикона от способа Вельдона. Задолго до того, как Дикон сделал свой способ достоянием гласности, получение хлора путем термического разложения хлорной меди было уже запатентовано. Автор патента предусматривал, конечно, и последующую регенерацию хлорной меди как самостоятельный, отдельный технологический процесс. Идея же Дикона, наоборот, заключалась в создании условий, благоприятствующих одновременно всем реакциям, из которых слагается процесс, с тем, чтобы совместить эти реакции во времени и пространстве и превратить периодический процесс в непрерывный. Для этого понадобилось лишь установить подходящий температурный режим. Так возник способ каталитического окисления хлористого водорода кислородом воздуха путем пропускания смеси этих газов через нагретую пористую массу, импрегнированную хлорной медью в качестве катализатора. Обычно мы получаем представление о реакции в целом прежде, чем нам удается расчленить ее на отдельные ступени и разъяснить тем самым роль участвующего в ней катализатора. Здесь же получилось наоборот каталитическая реакция [c.313]

    Получение винилхлорида из этилена и хлора с регенерацией хлористого водорода. При получении винилхлорида комбинированным методом хлористый водород, образующийся при термическом разложении дихлорэтана, используется для гидрохлорирования ацетилена. Однако применение этого метода выгодно только при наличии недорогого и доступного ацетилена. В противном случае возникает необходимость утилизации хлористого водорода. В связи с этим в последние годы разработаны два способа получения из хлористого водорода элементарного хлора Один из способов основан на электролизе концентрированной соляной кислоты. При этом одновременно с хлором образуется эквивалентное количество водорода. При электролизе только часть хлористого водорода превращается в хлор и водород. Образующаяся разбавленная соляная кислота концентрируется путем пропускания через нее газообразного хлористого водорода —продукта пиролиза дихлорэтана. По второму способу хлористый водород окисляют кислородом воздуха в присутствии катализатора (реакция Дикона)  [c.22]

    Нетрудно заметить, что это уравнение аналогично уравнению реакции, протекающей при получении хлора по способу Дикона. [c.52]

    До конца прошлого столетия хлор получали исключительно химическими методами, основанными на окислении хлористого водорода. В то время были распространены два способа получения хлора — Вельдона и Дикона. [c.25]

    Интересным способом получения гексахлорбензола является окисление изомеров гексахлорциклогексана кислородом или кислородом воздуха в присутствии катализаторов, применяемых при получении хлора из хлористого водорода по Дикону. При этом гексахлорбензол может быть получен практически без дополнительной затраты хлора. Выход гексахлорбензола колеблется в пределах 80—95% от теоретического. [c.98]

    По патентным данным, процесс следует вести в присутствии катализаторов, применяемых при получении хлора из хлористого водорода по Дикону. [c.84]

    Промышленное получение хлора началось в 1785 г. окислением соляной кислоты оксидом Мп (IV) (метод Вельдона) позже — кислородом в присутствии катализатора (метод Дикона). [c.152]

    Первое промышленное использование катализатора было осуществлено в 1746 г. Дж. Робеком при камерном получении серной кислоты. В то время Берцелиус еще не ввел термина катализ , это произошло в 1836 г. Раннее развитие катализа в 800-е гг. происходило в промышленной неорганической химии и было связано с процессами получения диоксида углерода, триоксида серы и хлора. В 1897 г. П. Сабатье и Ж. Сандеран обнаружили, что никель является хорошим катализатором гидрирования. В своей книге Катализ в органической химии П. Сабатье [3] рисует блестящие перспективы развития катализа в начале XX в. В это время еще трудно было ответить на вопросы о переходных состояниях, адсорбции и механизмах каталитических реакций, но Сабатье уже ставил правильные вопросы. Оказалась плодотворной его идея о временных, неустойчивых промежуточных соединениях, образующихся при катализе. Он жаловался на неудовлетворительное состояние знаний, но уже в пе-риод с 1900 по 1920 г. появились успехи во многих областях науки. Это было время Оствальда, Гиббса, Боша, Ипатьева, Эйнштейна, Планка, Бора, Резерфорда и др. Незадолго до 1900 г. свой вклад в органическую химию внесли такие ученые, как Э. Фишер, Кекуле, Клайзен, Фиттиг, Зандмейер, Фаворский, Дикон, Дьюар, Фридель и Крафте. [c.14]


    В 1870 г. английский исследователь Дикон применил реакцию окисления газообразного хлористого водорода кислородом и разработал метод получения свободного хлора, основанный на использовании дешевой соляной кислоты и кислорода воздуха. [c.202]

    И выше реакция Дикона в направлении получения хлора уже идти не может и сменяется полностью обратной реакцией окисления водяного пара хлором. [c.203]

    Описание контактного способа получения хлора по классическому методу Дикона значительно сокращено нами в аппаратурной части, [c.6]

    Получение хлора окислением H I. В старом методе Дикона катализатором служила двуххлористая медь, осажденная на носителе (глине) в количестве около 1%. Реакцию вели в аппарате с неподвижным слоем при 480 °С. В последнее время проявился некоторый интерес к процессу с кипящим слоем. На заводе I. G. Oppau недавно стали применять в качестве катализатора сплав хлоридов калия и окиси железа при температуре слоя 455 С. [c.325]

    Хлорид меди (II) применяют в технике в качестве переносчика кислорода при получении органических красителей. Раньше его использовали для той же це [И в процессе Дикона при получении хлора. Кроме того, u lj употребляется в пиротехнике, медицине и других областях. [c.403]

    Как известно, вначале для производства хлора использовались способы окисления соляной кислоты перекисью марганца (способ Вельдона) или воздухом в присутствии катализаторов (способ Дикона). В начале XX века эти способы были полностью вытеснены электролизом водных растворов поваренной соли. При производстве хлора электрохимическими методами с твердым катодом и диафрагмой и с ртутным катодом получались одновременно эквивалентные количества каустической соды или едкого кали при электролизе растворов KG1. В течение длительного времени потребности народного хозяйства в каустической соде превышали потребность в хлоре и недостаюш ее количество каустической соды производилось химическим способом из кальцинированной соды. Однако применение во многих отраслях народного хозяйства широкого ассортимента различных хлорпродуктов привело к необходимости очень быстрого развития производства хлора и его производных. При этом потребность в хлоре росла быстрее, чем в каустической соде [1—4], и вновь возник интерес к химическим методам производства хлора, поскольку они не связаны с одновременным получением каустической соды. [c.280]

    Первые процессы большого промышленного значения с использованием катализаторов были разработаны еще в прошлом веке получение хлора окислением хлористого водорода на сульфате меди (процесс Дикона) и окисление диоксида серы на платине. Дорогую платину в последнем процессе вскоре заменили оксидом железа, а с 20-х годов стал известен используемый до настоящего времени нанесенный катализатор УгОг— К2804. Этот катализатор в ГДР в ближайшее время должен быть заменен активным катализатором на основе оксида ванадия. В 1913 г. в Людвигсхафене и в 1916 г. на заводе Лейна в Мерзебурге были пущены первые установки для синтеза аммиака из элементов по методу Габера — Боша на железном катализаторе. К тому времени монооксид азота, необходимый для производства селитры, уже получали окислением аммиака на платиновых сетках. [c.10]

    Уже вс1 оре после опубликования работ Вёлера появился ряд патентов, предлагавших самые различные катализаторы. Среди них три патента принадлежат Г. Дикону (известному изобретателю способа получения хлора) [20]. Эти патенты оригинальны тем, что затрагивают вопросы потери активности катализаторов, что явилось впоследствии проблемой огромной практической важности. [c.127]

    Толчком для развития производства ацетилена явилось исследование реакций его хлорирования. Процессы получения хлора окислением хлорис--того водорода по Госсажу (с использованием двуокиси марганца, 1836 г.) и по Дикону (с применением воздуха И хлорида меди в качестве катализатора, 1868 г.) после работ Кастнера [18] и Кельнера [19] уступили место электролизу растворов хлористого патрия. Дэви, Бертло й другие обнаружили, что смеси ацетилена [c.26]

    До 1890 г. хлор и каустическую соду вырабатывали исключительно химическими способами. Хлор получали путем окисления соляной кислоты по способу Вельдона или хлористого водорода по способу Дикона, а едкий натр путем каустификации раствора кальцинированной соды известью или ферритным методом (метод Левига). Электрохимический способ получения едкого натра и хлора впервые был открыт Деви в 1807 г. при пропускании постоянного электрического тока через водный раствор поваренной соли. Промышленное производство каустической соды и хлора электрохимическими методами началось в 1890 г. и очень быстро почти полностью вытеснило старые химические способы производства. Доля производства каустической соды химическим способом в Советском Союзе в 1965 г. ориентировочно состави.ча 14, а в 1972 г. — 11%. [c.7]

    В качестве катализатора для снижения температуры замораживания можно пользоваться платиной граница замораживания спускается при этом до 120° С. Дикон нашел дешевый катализатор — хлорную медь. Применение этого вещества он обосновал тем, что медь соединяется как с кислородом, так и с хлором не особенно прочно, и потому полагал, что при нагревании хлорной меди [ u lal в присутствии кислорода соль может потерять часть хлора, переходя в хлористую медь [СиС1]. Это вещество присоединит к себе кислород, образуя хлорокись. При действии хлористого водорода получится снова хлорная медь и вода, а затем процесс повторится в описанном порядке многократно, и, таким образом, небольшое количество хлорной меди может превратить значительное количество водорода в воду и хлор. Кроме соединений меди, можно употреблять еще и соединения марганца и свинца, но медь оказалась наиболее удобной, так как действует при более низкой температуре (правда, не столь низкой, как в случае платины). Снижение температуры сдвигает равновесие в сторону большего выхода хлора, т. е. к более полному протеканию экзотермической реакции окисления H l. Если позволить реакционной смеси перегреться, выход хлора, т. е. отношение полученного хлора к взятому первоначально количеству хлористого водорода, падает, а, кроме того, хлорная медь из-за хорошей летучести начинает сама испаряться из реакционной смеси, что также невыгодно. Наиболее благоприятной для проведения каталитического окисления хлористого водорода кислородом воздуха оказалась область температур, более высоких, чем те, при которых каталитический процесс вообще возможен, а именно около 370° С. [c.202]

    В частности М. В. может образоваться при обработке щелоков серной кислотой, при производстве соды, хлора по методу Дикона, гипохлората кальция, треххлористого фос( ора, хлористого и сернокислого цинка, хлористого метила, диметилсульфата, сернокислого железа (из старого железа), при изготовлении мастики, при всех электролитических реакциях, протекающих в воде в гальванических элементах, содержащих двухромовокислый калий, при зарядке аккумуляторов в производстве анилиновых красителей (при восстановлении нитробензола или нитротолуола в анилин или, соответственно, толуидин водородом в момент выделения при получении из нитробензола бензидина с применением мышьяковистой кислоты) в производстве глюкозы (обработка крахмала с серной кислотой) при получении ацетилена  [c.155]

    Поскольку скорость реакции мала, необходимо работать при высокой температуре (400°) в присутствии хлорида меди U I2, осажденного на пористом материале, в качестве катализатора (метод Дикона). Концентрация полученного хлора из-за разбавления азотом воздуха составляет всего примерно 8%. Этот метод иногда применяют и для использования хлористого водорода, образующегося в качестве побочного продукта при хлорировании органических соединений. [c.344]


Смотреть страницы где упоминается термин Хлор получение по Дикону: [c.58]    [c.51]    [c.419]    [c.143]    [c.408]    [c.596]    [c.231]    [c.419]    [c.143]    [c.408]    [c.51]    [c.231]    [c.213]   
Синтез и катализ в основной химической промышленности (1938) -- [ c.214 ]




ПОИСК





Смотрите так же термины и статьи:

Дикона

Хлор получение



© 2025 chem21.info Реклама на сайте