Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхность контакта фаз барботажных

    Струйные тарелки (рис. 18) создают направленное движение жидкости и хорошо работают при высоких жидкостных нагрузках. При невысоких скоростях газа (пара) тарелки работают в барботажном режиме, кроме того, при малых скоростях пара наблюдается провал жидкости. Минимально допустимая скорость по газу в отверстиях чешуек составляет 7 м/с. При повышении скорости барботажный режим переходит в струйный (капельный), при этом сплошной фазой становится газ (пар), а жидкость распыляется на капли. Этот режим отвечает наибольшей поверхности контакта фаз и является рабочей областью, скорость пара в отверстиях при этом выше 12 м/с. Тарелки рекомендуются для разделения загрязняющих сред. Ы [c.64]


    В системе I (газ + газ) проводят высокотемпературные химические процессы, для которых применяют змеевиковые 2 и контактные аппараты 1 и конвертеры различных систем, а также процессы газоочистки, для которых используют газоочистительные аппараты 3. В системе И (газ-f жидкость) производят ректификацию, абсорбцию, мокрую газоочистку, а также многие химические реакции. Прн этом применяют колонные 4 и башенные аппараты с устройствами, обеспечивающими хороший контакт между жидкостью и газом. Для газов, хорошо растворимых в жидкости, когда достаточна небольшая поверхность контакта, процесс проводят в простейших аппаратах барботажного типа 5 или в поверхностных абсорберах 6. В системе III (жидкость + жидкость) осуществляют физико-химические и различные химические процессы. Для этого применяют емкостные аппараты с мешалками 7 или без них и аппараты змеевикового типа 8. Для обработки взаимно нерастворимых жидкостей с различным удельным весом иногда используют аппараты колонного типа с противоточным движением жидкостей. Сепарацию проводят в сепараторах центробежного типа 9. [c.5]

    Винтер А. А., Дорожкина Л. Н.. Городецкий И. Я.. Хим. пром.. № 8, 617 (1971). Определение поверхности контакта фаз (химическим методом) в прямоточных барботажных реакторах, секционированных ситчатыми тарелками. [c.269]

    В аппаратах с поверхностью контакта, образующейся в процессе движения потоков, обычно возникает так называемый барботажный слой, когда газ (пар), проходящий через слой жидкости, создает неоднородную газо-жидкостную систему. [c.267]

    Барботажный слой имеет чрезвычайно сложную структуру, так как он не гомогенен, некоторые его физические параметры (иапример, вязкость) ие определены, отсутствует фиксированная поверхность раздела фаз (она непрерывно меняет свою величину и форму), всплывающие пузыри и струи газа создают мощные циркуляционные токи жидкости, поэтому точное количественное описание барботажного слоя до настоящего времени не разработано. Параметрами слоя, характеризующими его структуру, служат плотность и высота газожидкостного слоя, размеры и скорость пузырей, поверхность контакта фаз, продольное перемешивание жидкой и газовой фаз. [c.267]

    Поверхность контакта фаз. Поверхность контакта фаз а в барботажном аппарате увеличивается с ростом газовой нагрузки [21]  [c.269]


    Уменьшение к. п. д. с увеличением скорости пара обычно Обусловлено уносом жидкости и ухудшением ее контакта с шаром вблизи колпачков. Влияние этих факторов компенсировалось увеличением высоты барботажного слоя, сопровождавшим увеличение скорости пара. Так, при / =0,106 и / =0,41 высота барботажного слоя была равна соответственно 74 и 94 мм. Влияние понижения температуры с 60 до 43° практически не обнаруживается. По-видимому, связанное с этим ухудшение массообмена за счет повышения вязкости компенсируется увеличением поверхности контакта фаз вследствие соответствующего возрастания расхода пара, вызванного понижением давления. [c.265]

    При конструировании крупномасштабных массообменных аппаратов, снабженных барботажными тарелками с переливом, используется несколько приемов, направленных на повышение эффективности массообмена в пределах площади тарелки. В частности, одним из направлений является интенсификация локального процесса массообмена между газом и жидкостью в точке, что достигается увеличением газосодержания пены или, что то же самое, поверхности контакта фаз. Второе направление используется в основном для повышения эффективности тарелок диаметром свыше 1200 мм и предусматривает продольное и поперечное секционирование площади барботажа на ряд участков меньшего размера. При этом предполагается, что потоки на этих участках распределены равномерно и тем самым обеспечиваются условия высокоэффективной работы тарелок в целом. [c.102]

    Как известно, поверхность контакта фаз на барботажных тарелках массообменных аппаратов образуется за счет уменьшения кинетической энергии газового потока, проходящего через слой жидкости, т. е. обусловливается гидравлическим сопротивлением мокрой тарелки. [c.104]

    ВЕЛИЧИНА ПОВЕРХНОСТИ КОНТАКТА ФАЗ В ИСПАРИТЕЛЯХ БАРБОТАЖНОГО ТИПА [c.65]

    Для контактных испарителей барботажного типа действительная поверхность контакта фаз [c.68]

    В барботажных абсорберах поверхность контакта развивается потоками газа, распределяющегося в жидкости в виде пузырей и струй. К этой группе относятся аппараты со сплошным барботажным слоем с непрерывным контактом между фазами, тарельчатого типа, с подвижной (плавающей) насадкой, с механическим перемешиванием жидкости. [c.215]

    Реакторы барботажные, в которых поверхность контакта фаз образуется при введении газа через газораспределительные устройства (барботеры) в слой жидкости (группа РБ). [c.6]

    При барботаже газа через жидкость образуется поверхность контакта фаз F. Анализируя эффективность работы барботажных реакторов, обычно пользуются понятием удельной межфазной поверхности а = F/u , однако надежных рекомендаций для ее расчета до сих пор не установлено. Часто встречающееся в литературе уравнение [c.18]

    Анализируя уравнение (11.68), следует отметить вытекающую из него независимость коэффициента массопереноса от размеров газового пузыря, что подтверждается и экспериментальными данными. Это положение несколько облегчает задачу расчета массообмена в барботажных реакторах, однако остается неопределенность относительно поверхности контакта фаз, для нахождения которой до сих пор нет надежных рекомендаций. Поэтому при описании кинетики газожидкостных реакций часто пользуются объемным коэффициентом массопередачи характеризующим собой количество вещества В, прореагировавшего в 1 м реакционного объема аппарата. В связи с этим следует вернуться к уравнению (И.55), в котором скорость реакции зависит от газосодержания системы. Появление в нем объясняется тем, что удельная поверхность а отнесена к реакционному объему аппарата Ур, т. е. к объему газожидкостной смеси. Если отнести поверхность контакта фаз к объему жидкости, участвующей в массообмене, то уравнение (И.55) не будет содержать параметра 1 — фр. Из этого следует, что для исключения 1 — ф из эмпирических уравнений, характеризующих объемный коэ ициент массопередачи, его нужно относить к объему жидкости, находящейся в реакционной зоне аппарата. [c.41]

    Выбор типа абсорбера определяется видом контакта потоков газа и жидкости. Для создания развитой поверхности контакта фаз газ пропускают через колонку с насадкой, орошаемую жидкостью (насадочные абсорберы), либо через аппарат, в котором жидкость распыливается форсунками или вращающимися механическими элементами (распыливающие абсорберы). Для хорошо растворимых газов используют поверхностные абсорберы, в которых газ пропускают над поверхностью жидкости или над поверхностью текущей пленки жидкости (пленочные абсорберы). Кроме того, газ может распределяться в жидкости в виде струек и пузырьков (барботажные абсорберы). [c.338]

    Барботажные (пенные) пылеуловители. Для очистки сильно запыленных газов, например технологических, выхлопных и дымовых, вентиляционного воздуха содового производства и др., используют барботажные пылеуловители. В этих аппаратах жидкость, взаимодействующая с газом, приводится в состояние подвижной пены, что обеспечивает большую поверхность контакта между жидкостью и газом и соответственно высокую степень очистки газа от пыли. [c.238]


    Объемные коэффициенты массоотдачи и массопередачи. Поверхность контакта фаз, к единице которой отнесены коэффициенты массоотдачи и массопередачи, в большинстве случаев трудно определить. Как будет показано ниже, в барботажных массообменных аппаратах эта поверхность представляет собой совокупность поверхностей брызг, пены и пузырей в насадочных аппаратах — некоторую активную часть геометрической поверхности насадки, смачиваемую жидкостью. Поэтому коэффициенты массоотдачи и массопередачи часто относят не к поверхности контакта фаз Р, к рабочему объему аппарата V, который связан с поверхностью зависимостью [c.409]

    С т р у й н ы й (и н ж е к ц и о н -и ы й) р е ж и м. При дальнейшем увеличении скорости газа длина газовых струй увеличивается, н оии выходят на поверхность барботажного слоя, не разрушаясь и образуя большое количество крупных бр1 зг. Поверхность контакта фаз в условиях такого гидродинамического 1 )ежима резко снижается. [c.450]

    Поверхность контакта фаз. Обычно поверхность контакта фаз определяют как поверхность находящихся в барботажном слое пузырьков. В этом случае удельную поверхность контакта фаз а (в м /м ) можно вычислить из уравнения (И,141)  [c.465]

    Приведенная классификация абсорбционных аппаратов является условной, так как отражает не столько конструкцию аппарата, сколько характер поверхности контакта. Один и тот же тип аппарата в зависимости от условий работы может оказаться при этом в разных группах. Например, насадочные абсорберы могут работать как в пленочном, так и в барботажном режимах. В аппаратах с барботажными тарелками возможны режимы, когда происходит значительное распыление жидкости и поверхность контакта образуется в основном каплями. [c.13]

    Это наблюдается, в частности, когда истинная поверхность контакта фаз неизвестна и коэффициенты массоотдачи относят к некоторой условной поверхности (например, в насадочных абсорберах к геометрической поверхности насадки,в барботажных абсорберах к площади тарелки). Если можно выделить влияние второй фазы на величину истинной поверхности контакта, то коэффициент массоотдачи становится не зависящим от гидродинамики и свойств этой фазы. Таким образом, влияние второй фазы оказывается косвенным. [c.123]

    Ряд исследований показывает [129, 130[, что скорость окисления N0 значительно повышается в аппаратах с высокоразвитой поверхностью контакта фаз, например в барботажных и механических абсорберах. Это объясняется, по-видимому, тем, что окисление происходит не только в газовой, но и в жидкой фазе в результате поглощения N0 и Оа. Имеются указания [130], что ускорение окисления может происходить и в пограничной зоне газовой фазы. [c.154]

    Рассмотренные методы разработаны применительно к насадочным аппаратам. Для аппаратов других типов (барботажных, распыливающих) таких методов пока не имеется. Их развитие усложняется отсутствием данных о поверхности контакта в этих аппаратах и о зависимости ее от свойств каждой конкретной системы газ—жидкость. [c.177]

    L е е J. С., М е у г i с к D. L., Trans. Inst. hem. Eng., 48, № 2, T37, (1970). Поверхность контакта между газом и жидкостью и газосодержание в водных растворах неорганических солей в барботажном сосуде с мешалкой. [c.284]

    М е h t а К. С., S h а г m а М. М., hem. Eng. Sei., 26, 461 (1971). Исследование (химическими методами) поверхности контакта фаз и массоотдачи в жидкой фазе в барботажных сосудах с мешалками. [c.285]

    В контактном теплообменном аппарате диспергирование одной из фаз производится при помощи распылителя той или иной конструкции (сопла, перфорированные тарелки и т.п.). На выходе из распылительного устройства происходит дробление струи на множество капель. При этом в барботажном слое создается развитая поверхность контакта фаз. На струю жидкости, вытекающую из отверстия или насадки, действуют силы инерции и гравитации, силы вязкости, поверхностного натяжения, а также турбулентные пульсации в струе и в самой среде. Капли, образующиеся при распаде струи, в процессе движения соударяются между собой п со стенками аппарата. Таким образом, конечная величина частиц диспергируемой фазы определяется суммарным эффектом трех процессов диспергирования, дробления и коалесценции. Определение этой величины расчетным путем пока еще невозможно из-за недостаточной изученности вопроса. Однако для ряда частных случаев решения уже получены и содержатся в работах Колдер-бенка, Фудзияма, Хейфорта и Тройбэла, Сиемса и др. [3]. [c.66]

    Теплообмен при ценном режиме осуществляют не только в теплообменниках с непосредственным контактом теплоносителей, но и при размещении теплообменных элементов (пучков труб, змеевиков) в слое пены. Теплоотдачу от поверхностей, погруженных в газожидкостную систему, изучали многие исследователи [234, 285, 408 и др.]. В подавляющем большинстве этих работ гидродинамический режим газожидкостной системы, в которой размещались теплообменные поверхности, был барботажный либо переходным (см., например, [73, 384, 399]) ти режимы характеризуются следующими значениями скорости газа 0,01—0,5 м/с (барботажный) и 0,6— 0,9 м/с (переходный к развитому пенному ежиму). Все авторы отмечают тот факт, что при введении газа в слой жидкобти, [c.111]

    В межтарельчатое сепарационное пространство вместе с потоком паров попадают капли жидкости различных размеров. Крупные капли, вследствие того что скорость паров в межтарельчатом пространстве меньше их скорости витания, как правило, под действием силы тяжести вновь возвращаются в слой жидкости. Мелкие капли, скорость витания которых меньше скорости движения паров в межтарельчатом пространстве, а также часть крупных капель, получивших большую начальную скорость, транспортируются потоком паров на вышележащую тарелку, что и приводит к их уносу. Концентрация капель жидкости в межтарельчатом пространстве убывает в направлении движения паров. Поверхность контакта фаз в сепа-рационном пространстве барботажных тарелок в основном определяется поверхностью капель жидкости, вклад которой в массообмен незначителен. [c.230]

    Удельная межфазная поверхность полидгсперсной системы газовых пузырей определяется свойствами жидкости и газа и их приведенными скоростями и не зависит от конструкции барботера. Влияние последней на газосодержание, а следовательно, и на удельную поверхность контакта фаз проявляется только при малых высотах барботажного слоя, например на ситчатых тарелках массообменных аппаратов, где высота расширяющейся струи газа соизмерима с общей высотой слоя динамической пены. Влияние свойств газа и жидкости на величину а при массовом барботаже очень сложно, доказательством чего могут, например, служить результаты исследований удельной межфазной поверхности в бар-ботажном реакторе, секционированном ситчатыми тарелками [14]. Эти опыты показали, что при приблизительно одинаковых физических свойствах жидкостей (вязкости, поверхностном натяжении и плотности) величина а для растворов электролитов оказалась значительно выше, чем для недиссоциированных жидкостей. Различие значений а наблюдалось и для разных растворов электролитов при постоянстве указанных физических свойств жидкостей. [c.19]

    Лабораторные исследования кинетики окисления (по сульфитной методике) в реакторах небольших объемов типов РМС и РМЦ показали, что эти аппараты по эффективности превосходят аппараты барботажного типа. Действительно, при механическом перемешивании жидкости вследствие развитой ее турбулентности достигается наиболее тонкое диспергирование пузырьков газа, что при достаточно высоком газосодержании создает большую удельную поверхность контакта фаз. Однако при увеличении диаметра реактора D с сохранением D/d = onst отношение окружной скорости мешалки к расстоянию от ее лопастей до стенок аппарата, которое в какой-то мере характеризует область распространения газовых пузырей в объеме жидкости, изменяется пропорционально величине Re /D. Это является одной из причин наблюдаемого относительного снижения эффективности массопереноса в газожидкостных реакторах при увеличении их размеров. К сожалению, мы не располагаем достаточным количеством данных для оценки критерия эффективности реакторов больших объемов с механическим диспергированием газа. Но, вероятно, на начальном этапе оптимизации такой анализ можно провести по результатам исследований аппаратов малых объемов. [c.127]

    В барботажных абсорберах процесс осуществляют обычно прн скоростях газа, значительно превышающих скорость свободного всплывания пузырька. При этом поверхностью контакта фаз является как поверхность газовых струй, которые проходят через барботажный слой, не разбиваясь в нем на отдельные пузырьки, так и поверхность капель, обра--зующихся над этим слоем при разрушении пузырьков. Определение поверхности струй и капель затруднительно. Кроме того, при измерении диаметра пузырька возникают трудности, связанные с усреднением замеренных значений и получением достаточно точных величин р- Некоторые данные о поверхности контакта фаз приводятся в специальной литературе .  [c.465]

    Высота абсорберов. Рабочую высоту Я (расстояние между крайними тарелками) барботажного абсорбера находят методами, указанными в главе X. При расчете Н ло уравнению массопередачи коэффициент массопередачи определяется с помощью уравнения (Х,47) или (Х,48). Так как расчет поверхности контакта фаз на тарелке затруднителен, при обработке опытных данных по массопередаче в тарельчатых аппаратах коэффициенты массоотдачи относят чаще всего к сечению 5,, тарелки (точно определяемая величина), либо к объему пеиы V,, -= Лгж т или жидкости на тарелке Уд — /1 5 (где и /г — высота пены и слоя жидкости на тарелке). [c.465]

    Процесс димеризации ацетилена можно проводить в различных реакторах, но все они должны обеспечивать хорошее перемешивание ацетилена и катализатора, а также иметь минимальное гидравлическое сопротивление катализатора для обеспечения безопасных условий работы. В производственных условиях лучше всего зарекомендовали себя аппараты барботажного типа. Они просты по конструкции. Для увеличения поверхности контакта ацетилена с катализатором в нижней части реактора устанавливают газорас-пределители с тангенциальным вводом газа. [c.227]

    Рассмотренные методы второй группы пригодны лишь в том случае, если не зависит от Rep. Независимость от Rep характерна для аппаратов с фиксированной поверхностью массопе-редачи (трубки с орошаемыми стенками, дисковые и шариковые колонны) или для аппаратов, в которых поверхность массопере-дачи не зависит от скорости газа (насадочные абсорберы при режимах ниже точки подвисания). В таких аппаратах, как барботажные абсорберы, поверхность массопередачн определяется скоростью газа, ОТ которой зависит и , отнесенный к условной поверхности контакта. [c.170]


Библиография для Поверхность контакта фаз барботажных: [c.577]   
Смотреть страницы где упоминается термин Поверхность контакта фаз барботажных: [c.163]    [c.56]    [c.285]    [c.285]    [c.285]    [c.286]    [c.286]    [c.286]    [c.140]    [c.82]    [c.83]    [c.450]    [c.12]    [c.92]   
Абсорбция газов (1976) -- [ c.156 , c.487 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхность контакта фаз



© 2025 chem21.info Реклама на сайте