Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гомоядерный спектр

    Не все молекулы поглощают инфракрасное излучение. В частности, молекулы с определенными свойства.ми симметрии, как, например, гомоядерные двухатомные молекулы, не поглощают инфракрасного излучения. В более сложных молекулах не все типы колебаний обязательно соответствуют поглощению инфракрасного излучения. Например, симметричные молекулы, как, скажем, этилен, Н,С=СН2, не обнаруживают всех своих колебаний в инфракрасном спектре. Для того чтобы помочь исследованию колебаний таких молекул, часто используется спектроскопия комбинационного рассеяния (КР). Спектр КР возникает в результате облучения молекул свето.м (обычно в види.мой области) известной длины волны. В современных спектрометрах КР в качестве источника света, облучающего образец, обычно используется лазерный пучок (рис. 13-35). Поглощение излучения измеряется косвенным путем. При облучении светом высокой энергии [c.590]


Рис. 10.15. Гомоядерный -спектр все того же соединения 1 из гл. 8 (только часть спектра, нормальный одномерный спектр приведен над контурными представлениями). Время регистрации по. /-координате было около 2,5 с. Контурное представление такого спектра не является идеальным. При высоком пороговом значении интенсивности в контурном представлении хорошо разрешаются детали интенсивных пиков, но пропадают некоторые резонансные сигналы (слева). Если же понизить пороговое значение при построении контурного спектра, то его интерпретация становится неоднозначной (справа). Рис. 10.15. Гомоядерный -спектр все того же соединения 1 из гл. 8 (только <a href="/info/1918624">часть спектра</a>, нормальный одномерный спектр <a href="/info/683717">приведен</a> над контурными представлениями). <a href="/info/1830376">Время регистрации</a> по. /-координате было около 2,5 с. Контурное представление такого спектра не является идеальным. При <a href="/info/499796">высоком</a> пороговом <a href="/info/575404">значении интенсивности</a> в контурном представлении хорошо разрешаются детали интенсивных пиков, но пропадают некоторые резонансные сигналы (слева). Если же понизить пороговое значение при построении контурного спектра, то его интерпретация становится неоднозначной (справа).
    Квантовое число верхнего уровня может принимать значения / = 1, 2, 3,. .. При поглощении энергии волновое число пропорционально квантовому числу того вращательного уровня, на который переходит молекула. В далекой инфракрасной и микроволновой областях спектра появляются группы линий, расположенные на равных расстояниях друг от друга. Разрешены переходы А/ = 1. Чисто вращательным спектром поглощения обладают только полярные молекулы, гомоядерные двухатомные молекулы такого спектра не дают. [c.344]

    Колебательные спектры поглощения дают только те молекулы, у которых при колебаниях изменяется дипольный момент гомоядерные молекулы к таким молекулам не принадлежат. Правило отбора при гармонических колебаниях имеет вид Аи = 1 (знак, относится к поглощению энергии). [c.345]

    Рис. 10.17. Вертикальные сечения из наклоненного гомоядерного -спектра можно представить в виде сигналов, близких по форме к сигналам поглощения (Л), но форма линии в таких спектрах сильно искажается. На рисунке для сравнения представлены два сечения из массива данных рис. 10,16 с вычисле-д нием и без вычисления магнитуды ( ) вместе с тем же мультиплетом из нормального одномерного спектра (В), обработанного эквивалентной взвешивающей функцией. [c.389]

    Наряду с описанными методами проецирования, позволяющими получать гомоядерные спектры без мультиплетного расшепления. [c.434]

    Гомоядерные спектры раздельных локальных полей [c.457]

    Каждый электронный переход вызывает изменение к леба1ель-ного и соответственно вращательного состояния. Хотя гомоядерные двухатомные молекулы не дают чисто колебательных и чисто вращательных спектров, в электронном спектре проявляется вращательная и колебательная структура в виде серий полос, отвечающих электронным переходам. Чем больше поглощенная энергия, тем более сближаются полосы. Возбуждение электронов приводит к возбуждению колебательных состояний и далее к диссоциации молекулы на невозбуждениый и возбужденный атом. Если сообщенная молекуле энергия превышает энергию, необходимую для этого процесса, то избыток ее идет на увеличение кинетической энергии атомов. Спектр поглощения газообразных атомов является непрерывным, поэтому у границы сходимости полос возникает область сплошного поглощения (континуум). Волновое число этой границы гр (также Умакс) определяет энергию перехода от невозбужденной молекулы к атомам, один из которых возбужден. Вычтя из этой энергии энергию электронного возбуждения атома Дбат, получим энергию диссоциации молекулы на невозбужденные атомы Во (рис. XXIX. 5). [c.346]


    Поскольку вклад диполь-дипольно-го механизма релаксации зависит от расстояния между ядрами (для ядер со спином /2 он обратно пропорционален шестой степени расстояния), то ЯЭО может использоваться в конфор-мационных исследованиях. Так, например, применяя гомоядерный двойной резонанс И— Н , регистрируют сначала обычный спектр однократного ПМР, а затем накладывают поле с частотой V2 в резонансной области какой-то определенной группы протонов. В разностном спектре будут наблюдаться ПМР только от протонов, расположенных близко к облучаемым, т. е. имеющих с ними спин-спиновую связь. Последовательно проводя такой эксперимент с разными группами протонов (меняя V2), можно получить полное представление об относительном расположении протонов в молекуле. [c.51]

    ПОЛОСЫ, расположенные в промежутке между смещенной линией и основной. Как выяснилось, большие смещения совпадают с волновыми числами линий поглощения в ближней инфракрасной области, т. е. с частотами колебаний атомов в молекуле [формула ( 1.189, табл. 30)]. Таким образом, изучение спектров комбинационного рассеяния в видимой области может заменить более трудное исследование спектров в невидимой инфракрасной области. Важно еще и то, что спектры комбинационного рассеяния дают гомоядерные молекулы На, N2, Оа и т. д., не проявляющие инфракрасного поглощения, так как их внутримолекулярные движения не связаны с изменением дипольного момента. [c.254]

    Возникновение чисто колебательных спектров КР также обусловлено изменением только колебательной энергии молекул в результате их взаимодействия с падающим излучением, хотя механизм такого взаимодействия иной. Следовательно, изучая колебательные спектры поглощения или колебательные спектры КР, можно определить расстояния между уровнями колебательной энергии с различными колебательными квантовыми числами, а также колебательную постоянную и коэффициенты ангармоничности молекулы или иона. Согласно так называемым правилам отбора чисто колебательные переходы разрешены (могут наблюдаться) в ИК-спектрах поглощения только для двухатомных гетероядерных молекул (т. е. состоящих из разных атомов А и В), имеющих отличный от нуля постоянный дипольный момент. В спектрах КР разрешены (могут наблюдаться) чисто колебательные переходы как для гетероядерных, так и дяя гомоядерных (состоящих из одинаковых атомов) двухатомных молекул. [c.531]

    Как видно из расчетов и анализа фотоэлектронных спектров, существует взаимно однозначное соответствие между валентными молекулярными орбиталями и энергиями молекул СО и N2. Схема этого соответствия приведена на рис. 6.10. Молекулярным орбиталям СО нельзя приписать символы gnu, которые характеризуют поведение при инверсии в случае гомоядерных двухатомных молекул (см. рис. 5.8), поскольку коэффициенты, [c.122]

    Книга всесторонне и доходчиво, а самое главное методологически правильно знакомит с теорией химической связи и результатами ее применения к описанию строения и свойств соединений различных классов. Сначала изложены доквантовые идеи Дж. Льюиса о валентных (льюис овых) структурах и показано, что уже на основе представлений об обобществлении электронных пар и простого правила октета при помощи логических рассуждений о кратности связей и формальных зарядах на атомах удается без сложных математических выкладок, как говорится на пальцах , объяснить строение и свойства многих молекул. По существу, с этого начинается ознакомление с пронизывающими всю современную химию воззрениями и терминами одного из двух основных подходов в квантовой теории химического строения-метода валентных связей (ВС). К сожалению, несмотря на простоту и интуитивную привлекательность этих представлений, метод ВС очень сложен в вычислительном отношении и не позволяет на качественном уровне решать вопрос об энергетике электронных состояний молекул, без чего нельзя судить о их строении. Поэтому далее квантовая теория химической связи излагается, в основном, в рамках другого подхода-метода молекулярных орбиталей (МО). На примере двухатомных молекул вводятся важнейшие представления теории МО об орбитальном перекрывании и энергетических уровнях МО, их связывающем характере и узловых свойствах, а также о симметрии МО. Все это завершается построением обобщенных диаграмм МО для гомоядерных и гете-роядерных двухатомных молекул и обсуждением с их помощью строения и свойств многих конкретных систем попутно выясняется, что некоторые свойства молекул (например, магнитные) удается объяснить только на основе квантовой теории МО. Далее теория МО применяется к многоатомным молекулам, причем в одних случаях это делается в терминах локализованных МО (сходных с представлениями о направленных связях метода ВС) и для их конструирования вводится гибридизация атомных орбиталей, а в других-приходится обращаться к делокализованным МО. Обсуждение всех этих вопросов завершается интересно написанным разделом о возможностях молекулярной спектроскопии при установленни строения соединений здесь поясняются принципы колебательной спектро- [c.6]

    Наиболее интересная информация заключена в J-спектре по координате Vi. Хорошо бы иметь возможность, как н в гетероядерном эксперименте, в сечениях параллельно v, обнаружить все компоненты мультиплета. К сожалению, нз-за поворота на 45 мы в действительности находим, что они содержат только одиночные линии. Каждый столбец, несущий сигнал по Vj, содержит одну компоненту мультиплета. Другой недостаток гомоядерного J-спектра обнаруживается, если представить себе его проекцию на координату Vj параллельно Vj, т.е, просуммировав столбцы массива данных. В гетероядерном экспери- [c.386]


    Рис. 10.19. примерно эквивалентные области непрямого а) и гомоядерного (б) -спектров глюкозы. Отметим, что порядок протонных и углеродных сдвигов [c.390]

    Как мы увидим позднее, поворот мультнплетных структур в некоторых случаях может быть сопряжен с определенными проблемами. Однако сначала рассмотрим вопрос о том, с какой целью мы хотим получить гомоядерный /-спектр. Сугубо умозрительно преимущества этого метода таковы разделение перекрывающихся мультиплетов ири нх развороте на вторую координату, возможное улучшение ширины линнн по из-за устранения неоднородности поля и возможность отличить гомоядерные константы, которые проявляются по координате V,, от гетероядерных, которые в рамках этого эксперимента выступают подобно химическим сдветам в проявляются только по координате У2-Имея в виду первые два связанных друг с другом аспекта, необходимо помнить, что эксперимент работает нормально только для систем чисто первого порядка. При наличии сильной связи появляются дополнительные лииии. Это означает, что эффективное дополнительное раэре- [c.385]

    В заключение можно сказать, что гомоядерный -спектр полезен только с учетом ряда ограничений. Мы должны иметь взаимодействие чисто первого порядка и удовлетвориться либо тем разрешением, которого можно достичь в режиме магнитуды, либо пойтн на сильное искаженна формы линий. В таком случае мы получаем возможность применить данный эксперимент для разделения перекрывающихся мультиплетов, а при использованин проекции получить положения центров мультиплетов. Если присутствует гетероядерное взаимодействие, то оно также проявится на проекции, поэтому эксперимент может быть использован для идентификации гетероядерных констант. [c.389]

    Метод упрощения спектров ЯМР с помощью двойного резонанса был предложен Ф. Блохом в 1954 году. В эксперименте с двойным резонансом исследуемый образец подвергается, кроме сильного постоянного поля действию двух радиочастотных полей Нг и Н2- Допустим, молекула исследуемого соединения содержит две группы неэквивалентных ядер А И X (например, метильная и метиленовая группы в нитроэтане или протоны метильной группы и ядро атома фтора в СНз—Р). Если в момент резонанса ядер группы А (совместное действие полей Но и Ну) воздействовать дополнительным радиочастотным полем Яа на ядра только группы X, то первые (группа А) также ощущают это воздействие, проявляющееся в спектре ЯМР в изменении вида сигнала ядер группы А по сравнению с сигналом этой группы прн отсутствии поля Яа-Обычно различают гегпероядерный (группы А и X содержат различные ядра, например молекула СНд—Р) и гомоядерный двойной резонанс (ядра групп Л и X одного изотопа, например протоны метильной и метиленовой групп СНз—СНа—МОа). [c.95]

    Другим чрезвычайно эффективным способом упрощения спектров является метод двойного резонанса (ДР). Этот метод был предложен еще в 1954 г. Блохом и успешно реализуется в последние годы. ДР быстро получил распространение и наряду с монорезонансом применяется как для структурных и физико-химических исследований, так и для изучения фоцессов релаксации. Помимо ДР находит применение тройной резонанс, в котором одновременно используют три высокочастотных поля. Отдельно нужно выделить гомоядерный двойной резонанс, при котором оба высокочастотных поля соответствуют резонансу ядер одного изотопа, и гете-роядерный двойной резонанс, при котором два высокочастотных поля соответствуют резонансным частотам различных изотопов. [c.83]

    Сильные линии / -ветви в полосе как бы продолжаются серией слабых линий Р-ветви [интенсивные линии имеют четные т нечетные ]) в -ветви и нечетные т (нечетные ]) в Я-ветви]. Для гомоядерных молекул с /=0 каждая вторая линия должна отсутствовать. В новом спектре, происхождение которого пока не известно, обычно не очевидно, отсутствуют или нет чередующиеся линии однако это можно обнаружить, если выяснить, является или нет R-вeтвъ продолжением Р-ветви (см. ниже). [c.75]

    Я полагаю, что вы уже сталкивались с традиционным ЯМР и близко знакомы с использованием протонного магнитного резонанса (ПМР) для решения структурных задач, В связи с этим книга не содержит разделов о связи химических сдвигов или констант снин-спиио-вого взаимодействия (КССВ) со структурой, так как эту информацию легко найти в других книгах и учебниках, но не только поэтому. Более важно то, что современные эксперименты ЯМР могут уменьшить нашу зависимость от таких эмпирических корреляций. До сих пор мы чаще всего ограничивались формулировками типа Спектр находится в соответствии со структурой X . Наша цель состоит в том, чтобы перейти к формулировкам Доказательство структуры X следует из.., , Я надеюсь, что вам знаком метод двойного протои-протонного резонанса, представляющий собой подавление снин-спинового взаимодействия между протонами (гомоядерная развязка). Этот метод несколько раз [c.16]

    Важность спии-спинового взаимодействия при определении структуры достаточно ясна из одномерных протонных спектров. Изучая структуру мультиплетов, мы часто можем решить, сколько соседей имеет протон. Мы даже можем проследить последовательность соседних протонов, анализируя расщепления. Эксперименты с гомоядерной развязкой еще более облегчают идентификацию ядер-соседей. Высокая информативность КССВ связана с тем, что их величины легко предсказать для разных фрагментов. Для протонов константы через 2 и 3 связи всегда лежат примерно в области от 2 до 20 Гц, а константы через большее число связей очень малы. Предсказуемость КССВ, а также тот факт, что они позволяют определить пары взаимодействующих ядер, делают их чувствительным индикатором молекулярной структуры, В противоположность этому химические сдвиги позволяют только грубо оценить химическое окружение индивидуального ядра. [c.20]

    С помощью какого из двух основных типов экспериментов рассматривать предмет двумерной спектроскопии Мне было трудно выб-ра гь между /-разрешенной спектроскопией и корреляционной. /-Спектры, описанные в гл. 10, могут быть поняты до конца (для систем первого порядка) при использовании нащей графической векторной модели, и с этой точки зрения начать можно было бы с ннх. Одиако эти эксперименты достаточно ограниченны по числу приложений, а у неискушенного читателя может возникнуть ощущение того, что достижение даже не очень значительных результатов с использованием этой техники потребует больших усилий. В то же время гомоядерные корреляционные спектры различных типов настолько полезны, что, очевидно, ие придется разочароваться, если начать именно с них, С этой точки зрения они, по-видимому, будут полезны в качестве вводных примеров. К сожалению, нам, возможно, не удастся до конца постичь всей глубины этих экспериментов без аиализа поведения макроскопической намагниченности. При этом возникает опасность напустить туману и окончательно запутать вопрос о том, что же все-таки происходит в двумерных экспериментах. Как видно нз названия этой главы, я в конце концов сделал выбор в пользу корреляционной спектроскопии, надеясь на то, что возиикающая при этом нестрогость описания экспериментов в достаточной мере компенсируется тем, что уже в самое ближайшее время иам удастся познакомиться с реальными химическими приложениями. [c.260]

    При определении характера спии-спиновой связи с помощью гомоядерной развязки возникают некоторые проблемы. Если мы имеем дело со сложным спектром, то может оказаться неочевидным, облучение каких сигналов будет наиболее информативным. При этом мы можем потратить массу времени иа проведение тех экспериментов, которые окажутся совершенно неинформативными. Даже если мы знаем, какие сигналы следует облучить, не всегда в спектре, имеющем сильное перекрывание сигналов, можно провести облучение с необходимой селективностью. Из-за сложного характера мультиплетиости результат развязки может быть замаскированным и не замеченным. Для решения последней проблемы предложен метод разностной развязки, но сам этот метод имеет ряд недостатков, в особенности нз-за эффектов, возникающих при сдвигах Блоха-Зигерта. [c.267]

    Выбор времени регистрации и цифрового разрешения для двух измерений является более важным аспектом задания двумерных экспериментов и требует переосмысления наших представлений о разрешении. Основная мысль, иа которую следует обратить внимание,-это то, что назначение эксперимеита состоит в разрешении индивидуальных ЛН1ШЙ в спектре правильнее сказать, корреляций между группами линий, представляющими интерес. Это положеиие станет гораздо яснее, еслн вы вспомните, что эксперимент OSY следует сравнивать с гомоядерной развязкой. Под понятием разрешение по Vj для серии гомоядерных развязок следует подразумевать ту степень селективности облучения, которая вызывает четко различимые изменения в какой-либо части спектра. Эго, возможно, составит величину порядка 40-50 Гц н более, так что даже плохо оцифрованный двумерный эксперимент с разрешением 10 Гц на точку имеет заметное преимущество перед своим одномерным конкурентом. Действительно, неудачные попытки различить кросс-пики редко бывают обусловлены низким уровнем оцифровки эксперимента OSY, при этом более сложные вопросы связаны с чувствительностью н с тем, может ли быть зарегистрирован кросс-пик, связанный с константой, заслуживающей особого внимания. [c.299]

    Исходный эксперимент INADEQUATE. Наконец, мы подошли к тому, с чего началось измерение углерод-углеродных коистант спин-станового взаимодействия. Строго говоря, этот предмет не совсем подходит для главы, посвященной гомоядерной корреляции. Но он столь тесно связан с описанными выше экспериментами, что было бы неразумно его от них отрывать. Углерод-углеродные взаимодействия проявляются в спектрах С как С-сателлиты лииий. Сателлиты, обусловленные прямыми константами, находятся на расстоянии 15-25 Гц от линий и, конечно, имеют амплитуду, составляющую 0,55% [c.339]

    В типичном спектре HS с довольно низким разрешением по v, наличие гомоядерного протон-протонного взаимодействия является неблагоприятным фактором. Зачастую отдельные линнн не разрешаются нз-за ограничений оцифровки, и тогда гомоядерное взаимодействие ведет к уширению резонансных сигналов и понижению чувствительности. Для задач с низким разрешением в работе [4] предложен такой вариант эксперимента, который с учетом определенных ограничений позволяет исключить большую часть гомоядерных взаимодействий по Vl- [c.359]

    Действие его иа протоны, связанные с и другие ( дальние ) протоны показано на рнс. 9Я. В гл. 10 (разд. 10.2.2) описана последовательность TANGO, которая аналогичным образом действует л/2-импульсом на прямо связанные ядаа н тс-нмпульсом на дальние ядра одного и того же типа. Помещая билинейный оператор поворота иа место ir-вмпульса по в центре последовательности HS (рнс. 9.9), мы получим спектр без гомоядерного взаимодействия по Vj (рис. 9.10). Отметим, что в этом спектре еше проявляются геминальные взаимодействия. При этом резонансные сигналы ядер, не вовлеченных в геминальные взаимодействия, стали синглетами по координате Vj. [c.360]

    Интересно отметить, что последовательность OLO без дополнительных модификаций дает спектры с широкополосной гомоядерной развязкой по координате Vi. Так как интервал между первым импульсом и шагом переноса поляризации фиксирован, то гомоядерные взаимодействия не подвергаются действию мобильного it-импульса в этом интервале и ие модулируют сигнал как функцию ty. В то же время на химические сдвиги влияет положение п-импульса, поскольку они рефокусируются за время ij и затем совершают эволюцию в оставшейся части времени Д . Координата v, спектра OLO содержит, таким образом, только протонные химические сдвиги. При этом наблюдаются корреляции между взаимодействующими ядрами, как н для эксперимента HS , Однако нужно помнить, что, хотя задержки Д и Д определяются в соответствии с величинами интересующих нас малых констант, в спектре могут присутствовать корреляции, обусловленные большими константами. Значения задержек Д, определенные для дальних констант, могут оказаться кратными величинам, соответствующим большим константам, что позволяет наблюдать оба типа корреляций. Если это вам мешает, то в эксперимент может быть встроен низкочастотный J-фильтр, упоминаемый в следующем разделе. [c.362]

    Эстафетный Н—Н—С-эксперимент может быть построен на основе HS [9], как показано на рнс. 9.12. Первый шаг-удалить импульс по углероду в конце периода ty, ограничивая таким способом перенос намагниченности к протонам. Для того чтобы сделать возможной передачу к углероду намагниченности, перенесенной между протонами, необходимо выждать, чтобы приняли одинаковую фазу те компоненты мультиплета, которые обусловлены гомоядерным взаимодействием и в даиный момент находятся в противофазе. Это происходит в течение периода т , в котором создается спиновое эхо для исключения влияния химических сдвигов (рнс. 9.12, последовательность Б). Теперь мы возвращаемся в состояние, подобное HS , и, как обычно, должны выждать время Aj для того, чтобы компоненты мультиплета, обусловленные гетероядерным взаимодействием, стали противофазными перед тем, как завершить перенос намагниченности с помощью импульсов по протонам и углероду. Задержка Aj выполняет ту же функцию, что и в последовательности HS . Последняя модификация состоит в том, чтобы поместить протонные и углфодные ir-нмпульсы в центры задержек Aj и А . Это необходимо, как и раньше, для фазочувствнтельных спектров. [c.363]

    Более глубокий анализ обнаруживает другие нежелательные аспекты нспользования неидеальных л-импульсов. В гетероядерном эксперименте с импульсом по протонам несовершенство этого импульса также вызывает появление в спектре дополнительных 1шков между истинньп и компонентами мультиплета [8]. В гомоядерном J-спектре (см. следующий раздел) существует даже больше оснований для беспокойства. Предположим, что it-импульс был слишком длинным. Тогда мы можем мысленно выделить в эксперименте ту его часть, которая соответствует [c.382]

Рис. 10.14. Сравнение гомоядерного а) и гетероядерного (6) /-спектров систем А3Х. В случае гомоядерного спсктра константа проявляется по обеим координатам, поэтому мультиплет имеет наклон 45°. Рис. 10.14. Сравнение гомоядерного а) и <a href="/info/1522960">гетероядерного</a> (6) /-спектров систем А3Х. В случае гомоядерного спсктра константа проявляется по обеим координатам, поэтому <a href="/info/6139">мультиплет</a> имеет наклон 45°.
    Даже для магнитудных спектров проекция под углом 45° может оказаться полезной. Получение проекций н сечений, которые также могут оказаться полезными для выделения сложных мультиплетов, значительно упрощается с помощью специального приема повороту подвергается весь массив данных. Это влечет за собой перемещение каждой заполненной строки в большей или меиьшей степени в зависимости от ее частоты по У) и ведет к представлению, похожему на гетероядерный -спектр. Вычисляется магнитудный спектр, тогда сечения параллельно V] содержат мультиплеты, а проекция на координату У2 выглядит как спектр с широкополосной гомоядерной развязкой это показано на рис. 10,16, Во всем этом деле разочаровывает следующее прилагая значительные усилия прн проведении эксперимента, который должен увеличить разрешение, мы затем ухудшаем его снова, проводя вычисление магнитуды. [c.387]

    Рис, 10,16. Наклоненное представление спектра, данного на рис. 10. ] 5, с проекцией на координату (в форме магнитуды). Оно похоже на спектр с гиирокополос-ной гомоядерной раэвязкон, однако это справедливо только для слабосвязанных систем. При наличии сильного спин-спинового взаи.модействия на половине расстояния между сигналами сильносвязанных ядер появляются дополнительные пики, которые отмечены стрелками на этом спектре. [c.388]

    В последний раз вернувшись к идее разделения перекрывающихся мультиплетов, мы рассмотрим эксперимент, который находится на стыке гетеро- и гомоядерной J-спектроскопии, причем в экспериментальном аспекте ои очень близок к гетероядерной корреляционной спектроскопии (гл. 9). Этот метод решает проблему полностью перекрывающихся мультиплетов, перекрывание которых, очевидно, сохранится и в гомоядерном J-спектре, Ои позволяет перенести гомоядерную мультиплетную структуру на химические сдвиги соседних гетероядер, В действительности идея довольно проста. Гетероядерный корреляционный эксперимент в принципе уже содержит тонкую структуру по вследствие гомоядерных взаимодействий между ядрами, от которых переносится намагниченность. Эту структуру ие просто разглядеть [c.389]

    В экспериментальном спектре, поскольку сложно оцифровать Vi достаточно тонко из-за того, что эта координата включает весь диапазон химических сдвигов для протонов-до 10 м, д. Еслн химические сдвиги убрать с этой координаты, что в принципе можно сделать с помощью спинового эха, то только ширина самого широкого мультиплета из тех, которые нужно охарактеризовать, будет определять диапазон частот по Vi, что уже делает возможным достижение высокого разрешения. Таким образом, последовательность нормальной корреляции химических сдвигов модифицируется просто добавлением протонного л-импульса в центре периода эволюции (рис, 10,18), при этом убираются химические сдвиги с координаты Vj. Эксперимент подробно описан в работе [14], Этот эксперимент имеет те же ограничения, что и гомоядерная J-спектроскопия, но характеризуется более низкой чувствительностью из-за того, что детектируется гетероядро, поэтому пользоваться им следует только в самых крайних случаях-при полном перекрываннн сигналов в нормальном J-спектре. На рис. 10.19 показаны результаты. [c.390]


Смотреть страницы где упоминается термин Гомоядерный спектр: [c.46]    [c.758]    [c.330]    [c.43]    [c.268]    [c.303]    [c.357]    [c.359]    [c.383]    [c.384]    [c.385]    [c.387]    [c.388]   
Смотреть главы в:

Современные методы ЯМР для химических исследований -> Гомоядерный спектр


Современные методы ЯМР для химических исследований (1992) -- [ c.384 ]




ПОИСК







© 2025 chem21.info Реклама на сайте