Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиэтилен простыми эфирами

    Как было указано выше, в смешанных сложных эфирах возможны два вида гликолевых группировок. Полиэтиленгликоль имеет повторяющуюся группу (—О—СНг—СНг—) простого эфира, тогда как диол с длинной цепью, например диметилол-гептан (ДМГ), не имеет повторяющихся простых эфирных групп. Как видно из табл. III. 3, смешанные сложные эфиры с группировкой простого эфира второго вида имеют более низкий индекс вязкости и меньшую вязкость при 98,9° С. Мак-Тэрк установил, что смешанные сложные эфиры из диолов с длинной цепью обычно уступают по физическим свойствам полиэтилен-гликолям, содержащим эфирные связи. [c.96]


    Электрохимическое обезжиривание основано на электрокапиллярных явлениях. Кабанов показал, что при погружении металла, покрытого маслом, Б некоторые щелочные растворы происходит разрыв сплошной пленки масла и вследствие изменения поверхностного натяжения и увеличения смачивания поверхности металла растворо л—собирание маслз в отдельные капельки, которые всплывают и дают с раствором эмульсию. Такому удалению масла с поверхности и эмульгированию его способствуют добавки поверхностно-активных веществ, так называемых эмульгаторов (жидкое стекло, мыло, желатина, клей, а также полиэтилен гликолевые эфиры под марками ОП-7и ОП-10, КонтактПетрова и др.) (см. 34, 17 ). Если же на металл, покрытый маслом, наложить электродный потенциал, краевые углы капель, образовавшихся на поверхности при погружении в щелочной раствор, уменьшаются пузырьки газа, выделяющиеся на электроде, захватывают капли и поднимают их на поверхность раствора. Полезно перемешивать электролит и повышать температуру до 60—80°С. Применяют плотности тока 3—10 а/дм (при обезжиривании ленты или проволоки до 50 а/дм ) напряжение 6—10 в, продолжительность 5—10 мин. Вторые электроды — никелированная сталь, просто сталь или даже корпус ванны. Растворы аналогичны указанным выше, примерно вдвое слабее. После обезжиривания — тщательная промывка. Электрохимическое обезжиривание бывает чаще катодным, иногда анодным, иногда комбинированным, т. е. с кратковременным переключением на анод. Основным преимуществом электрохимического обезжиривания является скорость и управляемость процесса, основным недостатком катодного способа — наводороживание металлов на катоде и ухудшение их механических свойств от этого. [c.341]

    Такие смолы, как эпоксидные, карбамидные, фурфурольные, циклогексаноновые, кумароноинденовые, поливинилхлорид, хлорированный поливинилхлорид, полиэтилен, полистирол, поливиниловый спирт, бензил-, метил- и этилцеллюлоза, гидрированная канифоль,поливиниловые простые эфиры практически не омыляются. [c.413]

    Для получения высоковязкого базового компонента смазочных масел можно использовать любой из указанных выше типов смешанных сложных эфиров. Смешанный сложный эфир, имеющий в середине двухосновную кислоту, характеризуется худшими показателями в отношении температуры вспышки, температуры застывания и вязкости при низких температурах, чем сложный смешанный эфир, в середине которого находится диол с длинной цепью. Вместе с тем последний имеет более высокую температуру застывания, чем эфиры подобного типа, в состав которых входит полиалкиленгликоль. Для получения оптимальных характеристик в отношении зависимости между вязкостью и летучестью большое значение имеют повторяющиеся группы простого эфира, подобные группам в полиэтилен- или полипропиленгликолях [c.88]


    Образование пленки из растворов смол. Этот класс связующих состоит из стабильных смолообразных веществ, которые обладают термопластичностью, растворимостью в некоторых растворителях и химической стабильностью в процессе пленкообразования. Смола высаживается из раствора, и образование пленки заканчивается с полным испарением растворителя. Эта группа включает такие смолы, как нитроцеллюлоза и большинство других сложных и простых эфиров целлюлозы многие виниловые смолы полиакрилаты или полиметакрилаты стироловые смолы производные каучука (циклический каучук, хлор-каучук) и некоторые полиэфирные и полиамидные смолы. Этот класс связующих, сравнительно недавно вошедший в технологию покрытий, приобрел очень важное значение, особенно в тех случаях, когда нельзя применить высокотемпературную сушку покрытий. В этот класс входят также некоторые из химически стойких связующих, как например полиэтилен, политетрафторэтилен, поливиниловые эфиры и т. д. [c.27]

    Полиалкиленгликоли, особенно полиэтилен- и полипропилен-гликоли и их сополимеры, их моно- и диэфиры, сложные эфиры — простые эфиры и эфиры двухосновных кислот [6.107, 6.108] имеют исключительно важное значение для получения специальных смазочных материалов, тормозных жидкостей, гидравлических жидкостей и СОЖ по ряду причин при смешении с водой или другими компонентами они практически невоспламеняемы, благодаря содержанию атомов кислорода они обладают лучшей растворяющей способностью по сравнению с углеводородами. [c.115]

    Диффузия и проницаемость. В большинстве систем полимер — сорбат обычно как диффузия, так и проницаемость возрастают с увеличением подобия между компонентами. Например, скорость проницаемости через полиэтилен ниже для сильно полярных веществ и выше для углеводородов в такой последовательности [215, 258] спирты, кислоты, нитропроизводные, альдегиды и кетоны, сложные и простые эфиры, углеводороды и галогенпроизводные углеводородов. [c.282]

    Камфора пе растворяет при 180 °С триацетат целлюлозы, водорастворимые простые эфиры целлюлозы, полистирол, полиизобутилен, полиэтилен, поливиниловый спирт, полиакрилонитрил, хлоркаучуки, бутадиен-стирольные каучуки разных марок, полиамиды. [c.605]

    Однако известно, что полиэтилен проницаем для ряда органических соединений, причем проницаемость его растет с увеличением аналогии в структуре проникающего вещества и полиэтилена [1]. Проницаемость полиэтилена по данным [2] наибольшая для малополярных растворителей и уменьшается по мере роста полярности. В той же работе [2] органические соединения располагаются по увеличению проницаемости в полиэтилене в следующем порядке спирты, кислоты, нитро-производные, альдегиды, кетоны, сложные эфиры, простые эфиры, углеводороды. [c.48]

    К карбоцеппым полимерным соединениям, характеризуемым углерод-углеродной связью в элементарных звеньях, относятся полиэтилен, полипронилен, полиизобутилен, полибутадиен, полиизопрен, политетрафторэтилен, поливинилхлорид, поливинилиденхлорид, полихлоропрен, поливиниловый спирт, поливиниловые простые эфиры, поливинилацеталь, полиакриловая кислота, полиакрилонитрил, полистирол. [c.109]

    Высокомолекулярные соединения, применяемые в лакокрасочной нр мышленности, имеют различную природу простые эфиры (целлюлозы углеводороды (полиэтилен, каучук), галоидопроизводные (поливинилхл рид и дополнительно хлорированный поливинилхлорид, названный в те лике перхлорвиниловой смолой), полиспирты (поливиниловый и полиа лиловый), производные полиспиртов (поливинилбутираль и др.). Некот( рые органические вещества, например высыхающие масла, переходят высокомолекулярные соединения в процессе пленкообразования. [c.151]

    Хлорсульфированный полиэтилен хорошо растворим в ароматических (бензоле и его гомологах) и хлорированных углеводородах (четыреххлористом углероде, хлороформе, хлорбензоле, ди-, три- и тетрахлорэтане, тетрахлорэтилене), плохо растворим в кетонах и сложных эфирах, циклических простых эфирах, циклических углеводородах, нерастворим в воде, кислотах и спиртах, гли-колях, минеральных и растительных маслах. Влагопоглощение за 30 сут 0,3—0,5%, следы влаги в невулканизованном хлорсульфи-рованном полиэтилене вызывают нежелательную преждевременную вулканизацию. [c.562]

    Растворяются в холодной концентрированной серной кислоте (или заметно реагируют с ней) не только олефины, но и спирты, фенолы, эфиры и другие соединения. Предельные и ароматические углеводороды и их галоидопроизводные, как это показал А. М. Бутлеров в 1873 г., устойчивы к действию этого реактива при низкой температуре. Простейший олефин—этилен хорошо растворяется в нагретой до 80 °С серной кислоте с образованием этилсерной кислоты, но полимеризуется ею весьма медленно. За последние годы разработан ряд методов полимеризации этилена с применением разнообразных катализаторов, Твердый и эластичный полиэтилен ( политен ) все шире внедряется в технику и быт в виде разнообразных изделий (пленки, трубы, посуда и др.). [c.83]


    Наиболее технически важными полимерами являются полистирол (производство около 400 ООО т в год), поливинилхлорид (около 350 ООО т в год), полиэтилен (около 250 ООО т в год). Большое значение имеют также поливинилацетат и получаемые из него поливиниловый спирт и поливинилацетали, ноливинилиденхлорид, полиакрилонитрил, полиакриловая и полиметакриловая кислоты и их эфиры, полиизобутилен, поливиниловые простые эфиры, поливинилкарбазол, поливинилпирролидон, галоидопроизводные полиэтилена — политетрафторэтилен, политрифторхлорэтилен. Синтетические каучуки, являющиеся в основном сополимерами бутадиена, будут рассмотрены позднее. Ниже кратко описаны отдельные наиболее важные или интересные из перечисленных полимеров. [c.68]

    Некоторые полимеры при пиролизе не образуют характеристических соединений, преобладающих по количественному содержанию (полиэтилен и этиленпропиленовые сополимеры, полиуретаны на основе простых эфиров, полисилоксаны). Однако в продуктах пиролиза большинства полимеров, в том числе и каучуков общего назначения, выявлены индивидуальные соединения, позволяющие осуществлять их идентификацию как в товарных полимерах, так и в материалах сложного состава, содержащих наряду с полимерами другие органические и неорганические компоненты (в резиновых смесях, найозтенных и ненаполненных вулканизатах, клеевых композициях, полимерных покрытиях и пленках, синтетических волокнах и т.п.). Использование индивидуальных характеристических продуктов пиро- [c.72]

    Метод ПГХ щироко используют для идентификации различных каучуков. По легким продуктам пиролиза, разделение которых проводили на колонке со скваланом при программировании температуры колонки от 70 до 130°С, идентифицированы некоторые каучуки и вулканизаты на их основе [91]. Разделение продуктов пиролиза таких полимеров, которые дают малоинформативные пирограммы с применением колонки со скваланом (фторуглеродный каучук, этиленпропиленовый, хлорсульфированный полиэтилен, полиэфирный на основе простого эфира и эпихлоргидриновый полимер) и основные продукты пиролиза которых сосредоточены в первой части пирограммы, проводили на колонке с поропаком Q. Получены характерные пирограммы для идентификации таких каучуков. [c.135]

    Величины Р, определенные этим методом, являются весьма приближенными и не точными для полимеров одинакового химического состава, но различных морфологических характеристик, а также когда компоненты системы проявляют специфические взаимодействия, т. е. величина Н (г, к) значительно отклоняется от единицы. В большинстве систем полимер — сорбируемое вещество диффузия и проницаемость в общем случае увеличиваются при близком сходстве химической природы компонентов. Так, например, скорость проникновения через полиэтилен минимальна для сильно полярных веществ и максимальна для углеводородов в такой после- довательности спирты, кислоты, нитропрои водные, альдегиды и кегоны, сложные эфиры, простые эфиры, углеводороды, га-лоидировзнные углеводороды. Химическая модификация полимера может резко влиять на величину В и Р. Введение метильных или полярных боковых групп в макромолекулу каучука увеличивает энергию когезии и уменьшает величины Р и но очень слабо влияет на растворимость Присутствие двойных связей в основной полимерной цепи способствует возрастанию коэффициента диффузии. Ауэрбах и сотрудники наблюдали трехкратное снижение величины коэффициента диффузии октадекана в полиизопрене по мере того, как остаточная ненасыщенность полимера уменьшалась путем гидрирования от 100 до 37%. Было няйьено. чго изменение молекулярного веса полимера оказывает незначительное влияние на скорости диффузии и проницаемости  [c.244]

    При термической или радиационной деструкции полиэтилена lia воздухе пли в кис. ороде 01тразуются кислородсодержащие соединения, по которым можно сделать вывод о механизме окисления [85, 1794]. Спектроскопическая идентификация этих кислородсодержащих соединений (альдегиды, кислоты, кетоны, сложные и простые эфиры, гидроперекиси, ацетали) и их количественное определение явились предметом большого числа исследований [89, 91, 211, 309, 546, 915, 1016, 1153, 1424]. При анализе продуктов окисления в полиэтилене полоса колебания v(OH) при 3559 см была отнесена к колебаниям гидроперекисных групп [211, 309]. В [915] было указано, что на положение полосы по-глощ ения ОН-группы влияют другие группы определено также содержание ОН-групп в окисленном полиэтилене по полосе при 1245 СМ [v( —О)] после количественного ацетилирования. Калибровку проводили радиохимическим способом, используя полиэтилен, окисленный ангидридом уксусной кислоты, который содержал изотоп С. В работе [1153] содержащиеся в полиэтилене ООН-группы переводили с помощью SO2 в сульфатные и затем определяли долю гидроперекисных групп по интенсивности полосы 1195 см . Интенсивность поглощения ООН-групп обычно очень мала для количественных измерений. [c.207]

    Образование пленки из растворов смол. При этом способе используются связующие, состоящие из стабил1.ных смолообразных веществ, обладающих термопластичностью, растворимостью и химической устойчивостью. Образование пленки из раствора этих смол заканчивается вместе с полным испарением растворителя. К этой группе материалов относятся нитроцеллюлоза и многие другие сложные и простые эфиры целлюлозы, большинство виниловых смол (полиакрилаты или полиметакрилаты), стирольные смолы,, некоторые полиэфирные смолы, поливиниловые эфиры, полиэтилен, поли- [c.154]

    В серии работ Шатенштейна с сотрудниками очень подробно исследовано влияние растворителей на образование и ионную диссоциацию аддуктов щелочных металлов с ароматическими углеводородами (бензолом, толуолом, дифенилом, нафталином). Измерения равновесных концентраций аддуктов, выполненные спектральными методами (электронные спектры, спектры электронного парамагнитного резонанса) позволили сопоставить сольвати-рующую способность по отношению к иону Ка большого числа кислородсодержащих растворителей (простых эфиров, эфиров этилен- и полиэтилен-гликолей, пяти- и шестичленных циклических эфиров и циклических ацеталей. Сольватация катиона металла вносит существенный вклад в энергетику реакции образования аддукта щелочного металла с ароматическим углеводородом. Поэтому тепловой эффект реакции сильно зависит от строения молекул растворителя, в частности от соотношения их геометрических парамет- [c.449]

    Методоы калориметрии изучена реакция коыплексообра-зования между полимерным простым эфиром - полиэтилен-гликолем и низкомолекулярным акцептором-диэтилалши-нийхлоридом. [c.825]

    По тому, как полимеры ведут себя при воздействии тепла, их условно делят на две группы 1) практически не карбонизующиеся такие полимеры претерпевают деструкцию с разрывом основной цепи макромолекулы и образовапием значительного количества низкомолекулярных соединений (напр., полистирол, полиметил-метакрилат, полиметиленоксид, полиэтилен) 2) карбонизующиеся такие полимеры проявляют склонность к реакциям заместителей без существенного разрыва основной цепи (напр., полиакрилонитрил, простые и сложные поливиниловые эфиры, поливиниловый спирт, целлюлоза, полимеры сетчатого строения). Способность полимеров к К. оценивают по т. наз. коксовым числам и содержанию углерода в коксе. Коксовые числа у полимеров 1 группы не превышают 1, а у полимеров 2 группы могут достигать 60—70. Способность полимеров к К. может быть повышена их соответствующей предварительной обработкой, напр, радиационным облучением, окислением или хлорированием. [c.475]

    Действие ионизирующего излучения на полимеры [385] показало, что при этом наступает сшивание таких полимеров, как полиэтилен, полиметилен, полипропилен, полистирол, полиакриловая кислота, полимеры простых виниловых эфиров, полиметилвинилкетон. Полиизобутилен, поли-а-метилстирол и полиметакриловая кислота при этом излучении претерпевают только деструкцию. [c.168]

    С другой стороны, при выборе профиля производств необходимо учитывать потребности региона, всего народного хозяйства, а в ряде случаев и мирового рынка в конкретных нефтехимикатах. Кроме того, принимая во внимание необходимость обеспечения коротких сроков окупаемости капитальных вложений, простоту освоения и эксплуатации, а также экологическую безопасность производств, мы остановились на относительно простых технологиях и продуктах, производство которьгх требует ограниченного числа переделов. К таким продуктам относятся прежде всего по-лиолефины полиэтилен, полипропилен, полистирол, а также оксагенаты, прежде всего метил-третбутиловый эфир (МТБЭ). [c.558]

    К началу 1959 г. основной объем нроизводства отрасли составляли фенолформальдегидные и карбамидные смолы и прессовочные материалы па их основе, поливпнилхлорид, акриловые пластики, простые и сложные эфиры целлюлозы и пластические массы на их основе, алкидные смолы, смолы для химических волокон. Б небольшом количестве выпускались полиэтилен низкой плотности, полистирол, винилацетат и его производные, ионообменные, эпоксидные и полиамидные смолы, а также некоторые другие тины полимерных материалов. Не вырабатывались полиэтилен высокой плотности, нолинронилен, полиуретаны, поликарбонат, полиформальдегид, ненасыщенные полиэфирные смолы и некоторые другие типы полимерных материалов. [c.276]

    Метод идентификации индивидуальных полимеров достаточно прост, так как в больщинстве случаев полимеры дают специфические пирограммы, четко отличающиеся друг от друга. Так, Гроутен [92] исследовал методом ПГХ более 150 различных полимеров, и почти все образцы дали отличающиеся пирограммы. Показана возможность идентификации полимеров винилового ряда, таких, как полистирол, поливинилацетат, поливинилхлорид, полиолефины (полиэтилен, полипропилен, по-ли-З-метилбутен-1, поли-4-метилпентен), различных марок найлона, полиуретанов, различных эфиров целлюлозы (ацетат, пропионат и бутират целлюлозы), а также натуральных волокон (шелк, хлопок, шерсть). [c.135]

    Бензол. Получают из продуктов пиролиза нефти и из каменноугольного сырого бензола, является растворителем масел, жиров, восков, каучуков, простых и сложных эфиров целлюлозы, крезолоформальде-гидиых и некоторых кремнийорганических смол [17] . При нагревании растворяет полиэтилен. Входит в состав смесевых растворителей (Р-6) и рекомендуется для применения в смывках. В настоящее время из-за высокой токсичности практически не используется в качестве растворителя. [c.28]


Смотреть страницы где упоминается термин Полиэтилен простыми эфирами: [c.12]    [c.133]    [c.220]    [c.175]    [c.471]    [c.507]    [c.507]    [c.507]    [c.125]    [c.244]    [c.347]    [c.138]    [c.303]    [c.247]    [c.337]    [c.478]    [c.63]    [c.201]    [c.193]   
Пластификаторы (1964) -- [ c.591 ]




ПОИСК





Смотрите так же термины и статьи:

Эфиры простые



© 2025 chem21.info Реклама на сайте