Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

также Активный транспорт

    Одной из наиболее интересных проблем биохимии является превращение химической энергии в механическую, что составляет основу таких биологических процессов, как мышечное сокращение, транспорт веществ между телом нейрона и синапсами, а также активный транспорт ионов и молекул через клеточную мембрану. Было подсчитано, что в состоянии покоя 30% энергии дыхания используется на работу натрий-калие-вого насоса. [c.172]


    Во внутреннем и внешнем О. в. принято различать структурный (пластический) и энергетический обмены. В структурном обмене рассматривают превращения разл. соед. в организме, их перенос (транспорт) внутри организма и между организмом и средой. В энергетич. обмене рассматривают превращения хим. энергии, образующейся в О. в., в тепло, мышечную работу, а также механизмы ее использования в активном транспорте, биосинтезе и др. [c.310]

    Внутриклеточные органеллы имеют собственные системы, концентрирующие ионы. Так, митохондрии могут концентрировать ионы К+, Са +, Mg + и других двухвалентных металлов, а также и дикарбоновые кислоты (гл. 10). У митохондрий транспорт многих веществ происходит скорее всего за счет обменной диффузии, т. е. путем вторичного активного транспорта. [c.359]

    Общая скорость процесса определяется скоростью создания пересыщения, а также скоростью транспорта вещества к растущей поверхности, т. е. эффективной диффузией [1, 3]. Физико-химические особенности кристаллизации из растворов (значения термодинамических потенциалов, активности и др,) при инженерных расчетах процессов в КС обычно не используются. Пересыщение АС — это положительная разность концентрации С растворенного вещества и зависящей от температуры равновесной концентрации Ср (растворимости), В обычно (в стационарном процессе) используемом достаточно узком температурном интервале  [c.315]

    Особенностью этих процессов является то, что связывание происходит без затрат энергии, но специфически если в мембране нет подходящих участков связывания для захватываемой частицы, то она и не взаимодействует с ней. Однако образование пузырька и его отрыв от мембраны требует затрат энергии, что указывает на сходство специфических видов клеточного транспорта с активным транспортом. Характерно также дальнейшее слияние пузырьков с лизосомами, где содержимое пузырьков разрушается. [c.109]

    Аминокислоты очень легко проникают в клетку. Доказано, что содержание аминного азота в клетках значительно выше, чем в среде. Коэффициент распределения аминокислот равен 200—900. Транспорт аминокислот нельзя объяснить законами простой диффузии. Надо полагать, что имеет место активный транспорт веществ, в котором участвуют особые переносящие вещества — пермеазы. Транспорт аминокислот через мембраны связан с потреблением энергии. В аминокислотном транспорте также наблюдается антагонизм — валин мешает проникновению фенилаланина аланин, лейцин, гистидин мешают проникновению глицина. О-Формы аминокислот менее антагонистичны по своим свойствам, чем Ь-формы. Микроэлементы в клетках могут накапливаться в больших количествах, чем в окружающей среде. [c.17]


    В гл. 1 уже говорилось о то.м, что практически все функции нейронов в большей или меньшей степени обусловлены свойствами мембран. В частности, мембранную природу имеют такие явления как распространение нервных импульсов, их электрическая или химическая передача от клетки к клетке, активный транспорт ионов, клеточное узнавание и развитие синапса, взаимодействие с нейромодуляторами, нейрофармакологическими веществами и нейротоксинами. Такой, несколько односторонний взгляд уточняется в настоящей главе рассмотрением цитоплазмы нейронов. Хотя в основном она сходна с цитоплазмой других клеток — в ней обнаружены те же органеллы (а также синаптические везикулы) и ферменты (и, кроме того, участвующие в метаболизме медиаторы), однако нейрональная цитоплазма адаптирована специфическим образом именно к функциям нейронов. [c.303]

    Таким образом, хотя каждая форма клеточной энергии может быть использована для осуществления химической, механической и осмотической работы, между ними существует определенное разделение труда , например, большинство биосинтезов обеспечивается энергией АТФ, активный транспорт — энергией Дрн+-Из этого следует, что клетке необходимо всегда иметь определенное количество энергии в той и другой легко мобилизуемой форме. Это может быть одной из причин существования в клетке двух взаимосвязанных энергетических пулов (резервуаров), между которыми при необходимости легко может осуществляться перекачка энергии (см. рис. 27). Емкость обоих энергетических пулов невелика. Например, величина Арн+ поддерживается на уровне 200—250 мВ. Внутриклеточная концентрация АТФ составляет около 2 мМ. Это также указывает на каталитическую роль АТФ в клетке. Подсчитано, что для удвоения клеточной массы молекула АТФ должна около 10000 раз участвовать в реакциях гидролиза и синтеза. [c.106]

    Регуляция процессов активного транспорта, обеспечивающего поступление подавляющего большинства необходимых прокариотам веществ, происходит на уровне синтеза переносчика и его функционирования. Биосинтез белковых компонентов многих транспортных систем регулируется по типу индукции. Глюкоза, транспортная система которой у большинства прокариот конститутивна, подавляет образование транспортных систем других сахаров и ряда органических кислот путем катаболитной репрессии. Исключение составляют некоторые облигатно аэробные прокариоты, у которых транспорт органических кислот конститутивен, а индуцируемой является транспортная система глюкозы. Избыток субстрата в среде может репрессировать синтез соответствующей транспортной системы. Это особенно характерно для аминокислот. В этом случае регуляция транспорта координирована с регуляцией их последующего метаболизма. Обнаружена также регуляция транспорта по типу отрицательной обратной связи, когда субстрат, [c.124]

    Для активного транспорта, как и для облегченной диффузии, характерны высокая специфичность, эффект насыщения транспортных белков транспортируемыми молекулами, когда кинетическая кривая выходит на плато, а также действие ингибиторов..  [c.311]

    АТР поставляет энергию также и для активного транспорта через мембраны [c.427]

    Быстрая инактивация служит средством быстрого уменьшения концентрации гормона. Постоянство концентрации инсулина поддерживается за счет равенства скоростей его синтеза и деградации. Кроме того, содержание гормонов в крови может регулироваться путем изменения скорости высвобождения запасенных гормонов, а также скорости транспорта и превращения про-гормона в активный гормон. [c.999]

    Таким образом и возникает торможение процесса за счет некоторых этапов транспорта компонентов реакции, накладывающееся на закономерности кинетики или симулирующее их. Это тормозящее влияние диффузии зависит от условий осуществления процесса, определяемых ими свойств реакционной системы, а также активности и других характеристик примененного катализатора. Одновременно могут возникать и градиенты температур благодаря торможению процессов теплопередачи, сопровождающему торможение массопередачи, либо независимо вследствие недостаточного внутрифазного и межфазного теплообмена, например между стенками катализатора или в нем самом. [c.292]

    При набухании митохондрий из окружающей жидкой фазы, гиалоплазмы, в митохондрии проникают субстраты окисления и другие растворенные вещества. Наоборот, при сокращении митохондрий происходит выталкивание различных веществ и поступление их в гиалоплазму. Этот обмен также представляет собой особую форму мембранного транспорта. Изучение кинетики активного транспорта сахаров внутрь митохондрий показало, что транспорт субстрата падает в несколько раз при сокращении митохондрий. Тем самым сокращение митохондрий вызывает ослабление процесса дыхательного фосфорилирования. Отсюда регулирование скорости реакций дыхания посредством изменения проницаемости. [c.184]


    Биологические мембраны являются барьерами, которые отделяют содержимое клетки от внешней среды, они выполняют также роль разделительных перегородок между отдельными секциями клетки. Через мембраны происходит транспорт различных веществ и ионов, необходимых для жизнедеятельности клетки. Этот процесс носит избирательный характер. При этом различают пассивный перенос, когда поток веществ движется в соответствии с градиентом концентраций или электрохимических потенциалов, и активный транспорт веществ, осуществляемый за счет генерируемой в клетке энергии. [c.15]

    По аналогии с транспортом натрия исследовался также активный транспорт протонов, где в экспериментах вариировались значения pH на внешней стороне или Аф. [c.134]

    Мол. механизмы генерирования и утилизации энергии на промежут. этапах О.в. изучает биоэнергетика, к-рая рассматривает сопряжение биол. окисления с фосфорилированием. Это обусловлено тем, что своб. энергия гидролиза осн. продукта фосфорилирования-АТФ и в меньшей степени др. фосфатных производных, напр, гуанозинтрифосфата, креатинфосфата,-обеспечивает в сопряженных р-циях синтез сложных соед., мьппечное сокращение, транспорт соед. через биол. мембраны против градиента концентрации (активный транспорт), создание на мембране электрич. потенциала, разряд к-рого, в частности, обеспечивает проведение нервного импульса и др. биоэлектрич. явления. Энергия гидролиза АТФ может также трансформироваться в световую энергию или служить в организме источником тепла. [c.316]

    Нек-рые П.-регуляторы иммунитета. К таким П. относят гормоны тимуса, тетрапептид тафтснн Thr—Lys—Pro—Arg (букв, обозначения см. в ст. Аминокислоты), являющийся фрагментом домена С 2 иммуноглобулина G, и пептидный антибиотик циклоспорин А, обладающий иммунодепрессив-ными св-вамн. К пептидным антибиотикам относят также актиномицины и др. Важную роль в активном транспорте ионов через биол. мембраны играют ионофоры. [c.471]

    Апобелки выполняют не только структурную функцию, но и обеспечивают активное участие комплексов ЛП в транспорте липидов в токе крови от мест их синтеза к клеткам периферических тканей, а также обратный транспорт холестерина в печень для дальнейших метаболических превращений. Апобелки выполняют функцию лигандов во взаимодействии ЛП со специфическими рецепторами на клеточных мембранах, регулируя тем самым гомеостаз холестерина в клетках и в организме в целом. Не меньшее значение имеет также регуляция апобелками активности ряда основных ферментов липидного обмена лецитин-холестеролацилтрансферазы, липопротеинлипазы, печеночной триглицеридлипазы. Структура и концентрация в плазме крови каждого апобелка находится под генетическим контролем, в то время как содержание липидов в большей степени подвержено влиянию диетических и других факторов. [c.576]

    Особого рассмотрения требуют ферменты, активируемые металлами, и прежде всего АТФазы, активируемые ионами щелочных и щелочноземельных металлов. К, Ыа-активируемая АТФаза, подвергнутая также действию a+ ответственна за явления активного транспорта в биологических мембранах. Са, Mg-aктивиpyeмaя АТФаза определяет механохимические процессы в биологических сократительных системах, в частности в мышце. И в том и в другом случае расщепление АТФ, катализируемое АТФазой, служит источником необходимой энергии (дальнейшие подробности см. в [146]). Бионе-органическая химия, частью которой является химия металлсодержащих белков, становится сейчас очень актуальной областью науки. [c.416]

Рис. 7.5. Модель активного транспорта ионов через мембрану. Согласно модели, Ка+,К -насос является переносчиком с более высоким сродством к ионам натрия внутри клеточной мембраны, а к ионам калия — снаружи. Изменение сродства происходит вследствие конформационных изменений при фосфорили-ровании и дефосфорилировании. Неясно, каким образом натрпйсвязывающие центры белков перемещаются с внутренней стороны мембраны на наружную. Не доказано вращение, предполагаемое моделью. Неясно также, поче на каждые три нона Ма+ транспортируется только два иона К" ". А=АТР Рис. 7.5. <a href="/info/1893449">Модель активного транспорта ионов</a> <a href="/info/152902">через мембрану</a>. <a href="/info/771004">Согласно модели</a>, Ка+,К -насос является переносчиком с <a href="/info/1456069">более высоким</a> сродством к <a href="/info/263999">ионам натрия</a> внутри <a href="/info/4417">клеточной мембраны</a>, а к <a href="/info/14688">ионам калия</a> — снаружи. <a href="/info/960322">Изменение сродства</a> происходит вследствие <a href="/info/2999">конформационных изменений</a> при фосфорили-ровании и дефосфорилировании. Неясно, каким образом натрпйсвязывающие <a href="/info/166596">центры белков</a> перемещаются с внутренней <a href="/info/1388494">стороны мембраны</a> на наружную. Не доказано вращение, предполагаемое моделью. Неясно также, поче на каждые три нона Ма+ транспортируется только два иона К" ". А=АТР
    В данном случае активность означает анальгетический эффект in vivo. Он определяется не только эффективностью пептида в месте его действия, т. е. сродством к рецептору, но и устойчивостью к ферментативной деградации, а также скоростью транспорта пептида к месту его действия. Нестабильность большинства производных энкефалина усложняет проведение экспериментов по их связыванию и не дает прийти к определенным выводам относительно лиганд-рецепторных взаимодействий в этом случае. [c.236]

    Тирозин-гидроксилаза регулируется по принципу обратной связи катехоламинами, а также цДМФ. Образование дофамина находится под контролем декарбоксилазы ароматических аминокислот, обладающей широкой субстратной специфичностью. Синтез норадреналина катализируется медьсодержащим ферментом — дофамин-р-гидроксилазой. И наконец, образование адреналина, связанное с метилированием норадреналина, происходит под действием фенилэтаноламин-Л -метилтрансферазы в цитоплазме адреналин-продуцирующих клеток. Донором метильных групп является 5-аденозилметионин. Новосинтезированные катехоламины поступают в хромаффинные гранулы посредством активного транспорта, где связываются с АТФ. Под действием нервного импульса происходит перемещение гранул к цитоплазматической мембране и выброс катехоламинов в экстрацеллюлярное пространство методом экзоцитоза. [c.155]

    Для проявления активности аминогликозидов важен также механизм их проникновения в клетки-мишени. Будучи заряженными и очень гидрофильными, антибиотики не могут проходить через мембраны путем диффузии. Позтому они научились индуцировать систему транспорта полиаминов, необходимую для нормального функционирования грамотрицательных бактерий, и проникают в клетки с помощью пермеаз спермидина и путресцина в результате активного транспорта. [c.735]

    Белки, входящие в состав пластичного слоя, подразделяют ( в зависимости от выполняемых функций) на основные ( мажорные) и второстепенные (минорные). К мажорным белкам относят пори-ны, образующие трансмембранные каналы, вовлеченные в транспорт ионов и гидрофильных соединений из внешней среды в периплазму. Они пропускают вещества с молекулярной массой порядка 6000 Да. Минорные белки также могут участвовать в транспорте веществ через пластичный слой (путем облегченной диффузии или активного транспорта молекул). Некоторые белки играют роль рецепторов для вирусов бактерий и бактериоцинов, а также для донорских пилей при конъюгации. [c.17]

    Некоторые компоненты, в частности глюкоза, в норме содержатся в моче в меньшей концентрации, чем в крови. Это объясняется тем, что относящиеся к этой группе вещества подвергаются обратному всасыванию из гломерулярного фильтрата в кровь против градиента концентрации благодаря действию АТР-зависимых систем мембранного транспорта. Вторая группа компонентов, включающая ионы КН , К и фосфат, содержится в моче в относительно высокой концентрации по сравнению с кровью эти компоненты активно транспортируются из крови в почечные канальца также против градиента концентрации. Вещества третьей группы, включающей мочевину и креатинин-конечный продукт распада фосфокреатина,-не подвергаются реабсорбции, и их концентрация в моче возрастает по мере ее прохождения по почечным канальцам. Особый случай представляют ионы Ка ". Эти ионы реабсорбируются путем активного транспорта из гломерулярного фильтрата в кровь в верхней части канальцев, однако в последующем часть ионов натрия опять поступает [c.763]

    Выделение поступивших в организм токсических веществ происходит различными путями через легкие, желудочно-кишечный тракт, почки, кожу. С выдыхаемым воздухом через легвсие вьщеляются летучие вещества (бензол, толуол, ацетон, хлороформ и многие другие) или летучие метаболиты, образовавшиеся при биотрансформации ядов. Нащ)имер, одним из конечных продуктов биотрансформации хлороформа, четыреххлористого углерода, этиленгликоля и многих других веществ является углекислота, которая выводится через легкие. Резервированные и щ1ркудирующие в крови яды и их метаболиты выводятся почками путем пассивной фильтрации в почечных клубочках, пассивной канальцевой диффузии и активным транспортом. Многие токсические вещества (ртуть, сероуглерод) выделяются потовыми железами кожи, а также слюнными железами. Многие яды и их метаболиты, образующиеся в печени, выделяются с желчью в кишечник. Такой путь выведения характерен для металлов (ртуть, свинец, марганец и др.). Обратная резорбция металлов из кишечника в кровь и из крови в печень обусловливает кишечно-почечную циркуляцию металлов, которая и определяет в итоге долю металла, выводимого кишечником. [c.9]

    Третья важнейшая функция белков — структурная. Клетка не может быть уподоблена сосуду, в котором попросту перемешаны в растворе все метаболиты п ферменты, — она разделена на множество органелл, защищенных белковьши, часто лппопротеиновьши, мембранами, наделенными ферментативной активностью, препятствующими свободному проникновению растворенных веществ. Внешняя оболочка клетки также является липопротеидной мембраной с весьма селективной проницаемостью. Большинство ферментов в клетке находится внутри тех или иных органелл. Поэтому и все биохимические процессы локализованы в определенных местах. Продолговатые, довольно крупные тела (длиной около 0,5 х) — митохондрии содержат в себе ферменты окисления и окислительного фосфорилирования, т. е. катализаторы реакций, в которых запасается энергия, потребляемая клеткой. Маленькие круглые образования (диаметром 150— 200 х ) — микросомы пли рибосомы содержат в себе ферменты, необходимые для синтеза белков. В ннх главным образом локализованы процессы синтеза белка. Задача, выполняемая структурными белками клетки, с одной стороны, чисто архитектурная белки служат материалом, из кото рого строится то или иное морфологическое образование. С другой стороны, они регулируют прохождение различных веществ внутрь органелл, т. е. осуществляют так называемый активный транспорт различных веществ, идущий часто против градиента концентрации, т. е. в сторону, противополон ную диффузии. В высших организмах, в которых произошла дифференциация и специализация тканей, некоторые структурные белки присутствуют в значительных количествах, образуя специальные типы тканей. Таков, например, коллаген, фибриноген крови, склеропротеин роговицы глаза и т. п. Изучение своеобразного молекулярного строения этих белков показывает его тесную связь с выполняемой ими функцией. В этом случае мы также имеем основание говорить о функциональной активности, разыгрывающейся на молекулярном уровне. [c.5]

    Вначале казалось, что металлы атакуют тиоловую SH-rpynny цистеина в белке. Однако удалось снять эффект отравления добавлением свободной аминокислоты гистидина. Гистидин не может конкурировать с сульфгидрильпой группой за ионы ртути поэтому Штейн предположил, что в состав активного центра входит также гистидин — аминокислота, охотно дающая комплексы с металлами. По-видимому, эта догадка правильна. Более того, гистидин, участвующий в активном центре, находится в N-конце полипептидной цепи. Это было доказано следующими обстоятельствами реагенты, атакующие N-концевые группы белков (фтор-динитробензол, фенилизотиоцианат), необратимо ингибируют активный перенос глицерина если в качестве экспериментального материала использовать так называемую строму красных кровяных клеток, т. е. оболочки эритроцитов, остающиеся после их осмотического разрыва (гемолиза), то в веществе оболочек можно обнаружить N-концевой гистидин путем реакции с теми же реаге тами. Важное наблюдение заключалось в том, что в случае предварительного насыщения стромы гликолем (1,3-пропандиолом), когда ферментативные центры были заблокированы, нри реакции с фенилизотиоцианатом концевой гистидин в реакцию не вступал. После отмывания гликоля можно было снова заставить прореагировать гистидин с фенилизотиоцианатом. Эти опыты показывают весьма убедительно, что фермент, действующий в случае активного транспорта глицерина, содержит в своем центре гистидин и притом концевой. Вместе с тем этот опыт подчеркивает трудность, о которой мы уже говорили. В процессах активного переноса все реакции разыгрываются внутри мембраны. И ферменты интегрированы в структуре мембраны. Поэтому так сложно их изучать. Фактически мы еще не знаем с определенностью ни одной из реакций, ведущих к химической диффузии важнейших метаболитов. [c.181]

    Остановимся еще на энергетике активного транспорта. Мы уже упоминали о том, что энергия необходима для этого процесса, и его можно остановить, прекратив процессы дыхания и гликолиза в клетке. Во многих случаях, например при переносе аминокислот, а иногда и некоторых сахаров, можно прекратить активный перенос с помощью специфических ядов, отравляющих окислительное фосфорилирование, т. е. образование в клетке богатых энергией фосфатов типа АТФ. Типичный яд такого типа 2,4-динитрофенол ингибирует очень сильно перенос аминокислот внутрь большинства клеток. Поэтому АТФ и другие подобные соединения, вероятно, являются во многих (но не во всех) случаях теми донорами энергии В, которые нами рассматривались в общей схеме активного переноса. С этим связана также, по-види-мому, значительная аденозинтрифосфатазная активность, сосредоточенная в клеточных оболочках. Если АТФ расщепляется в процессе активного переноса метаболитов до АДФи ортофосфата, то мембрана должна содержать ферменты, действие которых эквивалентно АТФ-азе. Опыт подтверждает это предположение. АТФ-азная активность найдена была в оболочках самых разных клеток (бактерий, эритроцитов, асцитного рака). [c.182]


Смотреть страницы где упоминается термин также Активный транспорт: [c.235]    [c.16]    [c.11]    [c.247]    [c.103]    [c.27]    [c.61]    [c.20]    [c.11]    [c.73]    [c.386]    [c.166]    [c.181]    [c.21]    [c.170]   
Биология Том3 Изд3 (2004) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте