Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адреналин образование

    Важнейшими продуктами метаболизма в нейронах являются катехоламины, к которым относятся три близких по структуре производных тирозина дофамин, норадреналин и адреналин. Дофамин и норадреналин служат нейромедиаторами. У многих беспозвоночных важную роль играет также октопамин [61], синтезирующийся из тирамина (рис. 16-8). Обратите внимание на взаимосвязь предшественник — продукт в ряду дофамин, норадреналин, адреналин. Путь биосинтеза этих нейромедиаторов включает реакции декарбоксилирования и гидроксилирования— типы реакций, имеющих место при образовании других медиаторов. Наиболее важным процессом, завершающим действие выделившихся катехоламиновых медиаторов, является обратное поглощение их нейро- [c.335]


    Важнейшим этапом регуляции синтеза липидов служит активация ацетил-СоА — карбоксилазы цитратом (гл. 8, разд. В,2 рис. 11-1). Помимо этого, синтез и распад триглицеридов, накапливающихся в печени и жировой ткани, находятся под сложным гормональным контролем. Так, адреналин и глюкагон, стимулируя образование с АМР, вызывают активацию липаз, которые расщепляют триглицериды таким путем происходит мобилизация жировых депо. С другой стороны, инсулин способствует накоплению жиров этот эффект обусловлен не только увеличением активности ферментов липогенеза, и в первую очередь АТР-зависимого цитратрасщепляющего фермента [уравнение (7-70)], но также ингибированием образования с АМР и, как следствие, подавлением липолиза в клетках. Наконец, сывороточная липопротеидлипаза. (называемая также осветляющим фактором ) расщепляет липиды, входящие в состав сывороточных липопротеидов, в процессе прохождения последних через мелкие капилляры. Освобождающиеся при этоМ жирные кислоты поступают в клетки, где вновь включаются в состав-липидов [44]. [c.556]

    Особую роль в регуляции метаболизма липидов играют гормоны. Следует обратить внимание на то, что жировой обмен регулируется практически теми же гормонами, что и обмен углеводов — адреналин и норадреналин, глюкагон, глюкокортикоиды, гормоны передней доли гипофиза (соматотропный гормон и АКТГ), а также тироксин и половые гормоны. Адреналин и норадреналин активируют липолиз в жировой ткани, в результате усиливается мобилизация жирных кислот из жировых депо и содержание неэстерифицированных жирных кислот в плазме повышается. Клк уже отмечалось (гл. 23.3), эти гормоны через цАМФ активируют соответствующую протеинкиназу, которая способствует фосфорилированию липазы, т. е. образованию ее активной формы. [c.356]

    Более важную роль в регуляции играют, однако, факторы, определяемые стимулирующим действием гормонов и нервной системы. Если концентрация адреналина в крови повышается, то этот гормон начинает связываться с рецепторами на поверхности клеточных мембран, активируя образование циклического АМР (гл. 7, разд. Д, 8). Аналогично в печени рецепторы глюкагона связывают этот гормон и стимулируют образование циклического АМР. Циклический АМР в свою очередь активирует протеинкиназы, которые модифицируют различные белки, в том числе киназу фосфорилазы (Ei на рис. 11-10), а также гликоген-синтетазу. В покоящейся мышце киназа фосфорилазы находится в неактивной форме, и фосфорилирование протеинкиназой переводит ее в [c.507]


    Адреналин и норадреналин образуются из аминокислоты тирозина и являются производными пирокатехина. Присутствие в их структуре пирокатехинового кольца определяет химические свойства этих гормонов. Они легко окисляются в нейтральных растворах с образованием красного пигмента — адренохрома, который при последующей полимеризации образует меланины. [c.178]

    Таким образом, адреналин оказывает двойное действие на обмен углеводов ингибирует синтез гликогена из УДФ-глюкозы, поскольку для проявления максимальной активности D-формы гликогенсинтазы нужны очень высокие концентрации глюкозо-6-фосфата, и ускоряет распад гликогена, так как способствует образованию активной фосфорилазы а. В целом суммарный результат действия адреналина состоит в ускорении превращения гликогена в глюкозу. [c.324]

    РАЦЕМИЗАЦИЯ — превращение оптически активных соединений в неактивные (рацемат). При Р. один антипод превращается в другой до образования эквимолекулярной равновесной смеси. Скорость Р. зависит от природы активного соединения, температуры, катализатора, растворителей. При Р. формально происходит обмен местами каких-либо атомов или радикалов, связанных с асимметрическим центром. Р. имеет большое практическое значение в производстве оптически активных соединений фармакологического назначения. Например, синтетический адреналин расщепляется на две формы -адреналин, соответствующий природному продукту, применяется как лекарство малоактивную Б-форму подвергают Р. до тех пор, пока весь синтетический адреналин превратится в требуемую -форму. [c.210]

    Характерной особенностью действия гормонов является уникальность их эффекта. Кроме того, действие одних гормонов, как правило, уравновешивается противоположным действием других. Например, как глюкагон, так и адреналин вызывают распад гликогена печени и поступление глюкозы в кровоток. Глюкокортикоиды повышают скорость образования глюкозы из других источников (гл. и, разд. Е, 7). Гормон роста способствует увеличению содержания глюкозы в крови, подавляя использование глюкозы в тканях. С другой стороны, под действием инсулина увеличивается потребление глюкозы тканями и повышается эффективность утилизации. Гормон щитовидной железы, повышающий общий уровень клеточного обмена веществ, также способствует снижению концентрации глюкозы в крови. [c.317]

    В результате изучения нервно-мышечных соединений, образованных автономной нервной системой, еще в 1904 г. было высказано предположение, что нервные окончания высвобождают адреналин (эпинефрин). Хотя позднее выяснилось, что в действительности химическим медиатором является норадреналин >, принципиально важно, что была сфор- [c.330]

    Биосинтез Г, осуществляется с помощью ферментов гли-козилтрансфераз. Исходным в-вом для синтеза может служить молекула олигосахарида, состоящая из остатков глюкозы, нлн белок, глюкозилированный в результате переноса на него остатка глюкозы с уридиндифосфатглюкозы. Г. расщепляется с помощью фермента фосфорилазы, переносящей остаток глюкозы на фосфорную к-ту с образованием а-0-глюкозо-1-фосфата, и разл. гидролаз (напр., ot-глюкози-дазы), катализирующих гидролиз связей 1 - 4 и 1 - 6. Распад и синтез Г. регулируется гормонами надпочечников и поджелудочной железы, напр, инсулином и адреналином. [c.575]

    При гидроксилировании дофамина аскорбиновой кислотой в присутствии медьсодержащего фермента [уравнение (10-57)] образуется нор-адреналин (норэпинефрин). Последующее метилирование приводит к образованию важного гормона адреналина (эпинефрина). Имеются два основных пути катаболического разрушения катехоламинов. Они показаны на рис. 14-20 на примере адреналина. Моноаминооксидаза (МАО) вызывает окислительное расщепление, сопровождающееся дезаминирб-ванием. Последующее окислительное отщепление боковой цепи в сочетании с метилированием дает такие конечные продукты, как ванилиновая кислота, выделяемая с мочой. Второй катаболический путь состоит в непосредственном О-метилировании под действием катехоламин — 0-метилтрансферазы (КОМТ), очень активного фермента, присутствующего в нервных тканях. Метаболиты почти не обладают какой-либо заметной физиологической активностью и могут экскретироваться как таковые или подвергаться дальнейшему окислительному распаду,  [c.148]

    Тирозин-гидроксилаза регулируется по принципу обратной связи катехоламинами, а также цДМФ. Образование дофамина находится под контролем декарбоксилазы ароматических аминокислот, обладающей широкой субстратной специфичностью. Синтез норадреналина катализируется медьсодержащим ферментом — дофамин-р-гидроксилазой. И наконец, образование адреналина, связанное с метилированием норадреналина, происходит под действием фенилэтаноламин-Л -метилтрансферазы в цитоплазме адреналин-продуцирующих клеток. Донором метильных групп является 5-аденозилметионин. Новосинтезированные катехоламины поступают в хромаффинные гранулы посредством активного транспорта, где связываются с АТФ. Под действием нервного импульса происходит перемещение гранул к цитоплазматической мембране и выброс катехоламинов в экстрацеллюлярное пространство методом экзоцитоза. [c.155]


    Однако если у низших организмов сАМР используется как гормон, то у более высокоорганизованных животных такое его использование оказывается невозможным из-за высокой метаболической лабильности этого соединения. В результате дело обстоит так, что в нашем организме такие гормоны, как глюкагон и адреналин, переносят сигнал к клеточной поверхности, где они связываются с рецепторами и стимулируют образование сАМР. Это в свою очередь приводит к мобилизации метаболических ресурсов клетки, в частности гликогена и триглицеридов, что в точности соответствует реакции клетки на голодание. Согласно схеме, предложенной Томпкинсом, гормоны вырабатываются сенсорными клетками при прямом воздействии сигналов среды затем поступая с кровью в более отдаленно расположенные клетки- 0тветчи -ки , Активируют их. Картлну можно- дредстамщь [c.317]

    ДЕКАРБОКСИЛИРОВАНИЕ. Декарбоксилирование — еще одна общая биологическая реакция а-аминокислот, катализируемая ферментами — декарбоксилазами, которые встречаются у самых различных организмов. Некоторые амины обладают ярко выраженной биологической активностью, и декарбоксилирование аминокислот служит важным источником их возникновения. Особенно существенным является образование дофамина при декарбоксилировании диоксифенил а лапина, поскольку дофамин — это биологический предшественник адреналина. [c.397]

    Реакции декарбоксилирования приводят к образованию биогенных аминов. Это - биологически активные соединения, выполняющие различные регуляторные функции. Примером могут служить биогенные амины, образующиеся в ходе последовательных реакций, начиная с тирозина, триптофана, глутаминовой кислоты или гистидина. Реакции протекают сначала как декарбоксилиро-вание соответствующих аминокислот, в результате чего образуются биогенные амины, обладающие определенной физиологической активностью. Так, гистамин известен своим участием в различных аллергических реакциях, а производные тирамина гидроксилируются и превращаются в ряд соединений, называемых катехоламинами (ДОФА, норадреналин, адреналин), которые известны как медиаторы возбуждающего действия в нервной системе. [c.14]

    Гипергликемический эффект глюкагона обусловлен, однако, не только распадом гликогена. Имеются бесспорные доказательства существования глюконеогенетического механизма гипергликемии, вызванной глюкагоном. Установлено, что глюкагон способствует образованию глюкозы из промежуточных продуктов обмена белков и жиров. Глюкагон стимулирует образование глюкозы из аминокислот путем индукции синтеза ферментов глюконеогенеза при участии цАМФ, в частности фосфоенолпируваткарбок-сикиназы —ключевого фермента этого процесса. Глюкагон в отличие от адреналина тормозит гликолитический распад глюкозы до молочной кислоты, способствуя тем самым гипергликемии. Он активирует опосредованно через цАМФ липазу тканей, оказывая мощный липолитический эффект. Существуют и различия в физиологическом действии в отличие от адреналина глюкагон не повышает кровяного давления и не увеличивает частоту сердечных сокращений. Следует отметить, что, помимо панкреатического глюкагона, в последнее время доказано существование кишечного глюкагона, синтезирующегося по всему пищеварительному тракту и поступающего в кровь. Первичная структура кишечного глюкагона пока точно не расшифрована, однако в его молекуле открыты идентичные М-концевому и среднему участкам панкреатического глюкагона аминокислотные последовательности, но разная С-концевая последовательность аминокислот. [c.272]

    Гликогеноз I типа (болезнь Гирке) встречается наиболее часто, обусловлен наследственным дефектом синтеза фермента глюкозо-6-фосфатазы в печени и почках. Болезнь наследуется по аутосомно-рецессивному типу. Патологические симптомы появляются уже на первом году жизни ребенка увеличена печень, нередко увеличены почки. В результате гипогликемии появляются судороги, задержка роста, возможен ацидоз. В крови—повышенное количество лактата и пирувата. Введение адреналина или глюкагона вызывает значительную гиперлактатацидемию, но не гипергликемию, так как глюкозо-6-фосфатаза в печени отсутствует и образования свободной глюкозы не происходит. [c.362]

    Известно, что длительный отрицательный эмоциональный стресс, сопровождающийся увеличением выброса катехоламинов в кровяное русло, может вызвать заметное похудание. Уместно напомнить, что жировая ткань обильно иннервируется волокнами симпатической нервной системы, возбуждение этих волокон сопровождается выделением норадреналина непосредственно в жировую ткань. Адреналин и норадреналин увеличивают скорость липолиза в жировой ткани в результате усиливается мобилизация жирных кислот из жировых депо и повышается содержание неэстерифи-цированных жирных кислот в плазме крови. Как отмечалось, тканевые липазы (триглицеридлипаза) существуют в двух взаимопревращающихся формах, одна из которых фосфорилирована и каталитически активна, а другая—нефосфорилирована и неактивна. Адреналин стимулирует через аденилатциклазу синтез цАМФ. В свою очередь цАМФ активирует соответствующую протеинкиназу, которая способствует фосфорилированию липазы, т.е. образованию ее активной формы. Следует заметить, что действие глюкагона на липолитическую систему сходно с действием катехоламинов. [c.403]

    Ежегодно в мире производится более 200 тыс. тонн аминокислот, которые используются в основном как пищевые добавки и компоненты кормов для скота. Традиционным промышленным методом их получения является ферментация, однако все большее значение приобретают химические и особенно ферментативные методы синтеза различных аминокислот. Наибольший удельный вес в промышленном получении аминокислот имеет лизин и глутаминовая кислота, в больших количествах производят также глицин и метионин. Аминокислоты, особенно незаменимые, т. е. не синтезирующиеся в организме, представляют большой интерес в первую очередь для медицины и пищевой промышленности. Фенилаланин является предщественником ряда гормонов, осуществляющих многие регуляторные реакции в организме, метионин — основной донор метильных группировок при синтезе адреналина, креатина, а также источник серы при образовании тиамина, валин участвует в синтезе пантотеновой кислрты, треонин — предшественник витамина B 2 и т. д. Следовательно, дефицит аминокислот, способствующий нарушению многих обменных процессов, должен восполняться за счет введения соответствующих экзогенных аминокислот.- [c.26]

    Вторая фаза—образование в месте повреждения рыхлой тромбоци-тарной пробки, или белого тромба. Имеющгшся в участке повреждения сосуда коллаген служит связующим центром для тромбоцитов. При агрега-Ц1Ш тромбоцитов освобождаются вазоактивные амины, например серотонин и адреналин, а также метаболиты простагландинов, например тромбоксан, которые стимулируют сужение сосудов. [c.600]

    Усиление и ослабление меланогенеза наблюдается при ряде заболеваний, в том числе болезни Паркинсона, аддисоновой болезни, а также при витилиго. Однако изменения меланогенеза являются при этих заболеваниях, по-видимому, вторичными. В некоторых случаях источником мономеров для меланиновых молекул может служить адреналин (7.22) или его предшественники, используемые в нормальных условиях для образования адреналина. [c.277]

    Иодат калия. Хроматограмму опрыскивают 1 %-ным водным КЮ3 нагревают при 100 -110°С в течение <2 мин. Этот тест, как и два предыдущих, основан на образовании иодохромов. Адреналин (1 мкг) дает сначала розовое пятно, переходящее затем в коричневое, норадреналин (2 мкг) фиолетовое, затем коричневое, допамин оранжево-коричневое пятно, изопропилнорадреналин красное, эпинин оранжевое. [c.387]

    Метилирование фосфолипидов. Представляется вероятным, что метилирование РЕ связано с передачей сигнала через клеточные мембраны метилтрансфераза, расположенная на внутренней стороне многих клеточных мембран, метилирует до фосфа-тидил-Н-монометилэтаноламина. Вторая метилтрансфераза, локализованная на внешней стороне мембраны, осуществляет его дальнейшее метилирование до РС. При этом донором метильных групп в каждом случае также является 8-аденозилме-тионин. Метилирование РЕ влияет на текучесть мембраны, оно стимулируется нейромедиаторами ряда катехоламина, например адреналином, и приводит к поступлению в клетку ионов кальция, образованию сАМР, высвобождению гистамина и т. д. [4]. [c.39]

    Биохимические функции. Катехоламины действуют на клетки-мишени по мембрано-опосредованному механизму, чему в немалой степени способствует гидроксилирование кольца и боковой цепи этих соединений. Катехоламины взаимодействуют с а- и р-адренергическими рецепторами, локализованными в мембранах клеток-мишеней. Адреналин взаимодействует с обоими типами рецепторов, а норадреналин преимущественно с а-рецепторами. Каждая группа рецепторов разделяется на две подгруппы, а именно a и а2, а также (3 и Группа а[-, а2-рецепторов проявляет эффекты сосудосуживающего действия, сокращения гладких мышц, ингибирования липолиза. Действие р-рецепторов связано с активацией аденилатциклазы, образованием цАМФ и последующим фосфорилированием белков. Например, адреналин, взаимодействуя с р-рецепторами через систему вторичных посредников, активирует протеинкиназу, которая фосфорилирует ряд цитоплазматических белков. Таким образом, адреналин регулирует гликогенолиз в печени и в мышцах, а также глюконеогенез в печени. Мобилизация гликогена в мышцах происходит под действием фермента фосфорилазы, которая находится в виде неактивного димера (форма Ь) или активного тетрамера (форма а). Активированная посредством адреналина протеинкиназа фосфорилирует фермент киназу фосфорилазы Ь, что приводит к ее активации  [c.156]

    Гормоночувствительная липаза является важнейшим регуляторным ферментом процессов липолиза. Многие гормоны являются активаторами этого фермента. К гормонам, которые быстро промотируют липолиз, относятся прежде всего катехоламины (адреналин и норадреналин) и глюкагон, которые стимулируют активность аденилатциклазы — фермента, катализирующего образование из АТФ циклического АМФ (цАМФ). Механизм активации тригли-церидлипазы в этом случае аналогичен механизму гормональной стимуляции фермента гликогенолиза — гликогенфосфорилазы, т. е. осуществляется путем ковалентной химической модификации по механизму фосфорилирования — дефосфорилирования (гл. 18). [c.327]

    Инсулин оказывает противоположное адреналину и глюкагону действие на липолиз и мобилизацию жирных кислот. В настоящее время установлено, что инсулин стимулирует фосфодиэстеразную активность в жировой ткани и таким образом играет важную роль в поддержании стационарного уровня цАМФ в тканях, а следовательно, и образовании активной формы липазы. Инсулин оказывает стимулирующее действие на процессы биосинтеза жирных кислот и триацилглицеролов, окисление глюкозы и образование пирувата. Все эти эффекты зависят от концентрации глюкозы и могут бьггь объяснены способностью инсулина увеличивать поступление глюкозы в клетки жировой ткани. [c.356]

    Вещество со структурной формулой 6.381 называется мелатонином. Оно синтезируется в эпифизе млекопитающих и играет роль гормона. Эпифиз — это небольшая по размеру железа, находящаяся в мозгу человека и всех позвоночных. Ее функции во многом не ясны. По крайней мере, установлено, что эпифиз участвует в формировании реакции на освещенность. Информацию об уровне освещенности железа получает по нервным путям и преобразует ее в модуляции синтеза амида 6.381 из серотонина. В темноте образование его усиливается. Мелатонин угнетает деятельность половых желез и продукцию меланина меланопитами (см. разд. 6.10,1), Увеличение долготы светового дня приводит к падению уровня гормона 6.381 в крови и к отмене его ингибирующего действия на половую функцию, В этом состоит биохимическая основа индукции размножения у животных с наступлением осенне-летнего периода. При участии мелатонина происходит также усиление пигментации кожи в ответ на увеличивающееся освещение. Кроме того, вещество 6.381, совместно с серотонином и адреналином, участвует в установлении суточных ритмов физиологических функций. [c.518]

    Серотонин, например, рассматривается как третье физиологическое вещество, которое наряду с ацетилхолином и адреналином является активным при передаче нервного раздражения по нервной системе человека. Основное количество серотонина, вероятно образованного из триптофана через 5-окситриптофан, находится в организме в виде физиологически неактивного соединения с белком. При действии ряда соединений, например индоло-вого алкалоида резерпина и прежде всего диэтиламида лизергиновой кислоты, это белковое соединение может разрушаться. Свободный серотонин подвергается действию аминооксидазы и превращается в моче в [5-оксиндолил-(3) ]-уксусную кислоту [15]. [c.295]

    Фенилэтаноламин-К-метилтрансфераза катализирует образование адреналина из норадреналина и К-метилирование других фени-лэтаноламиновых производных. [c.410]

    Проп-2-ен-1-ол Аллиловый спирт СН2=СНСН20Н начальной части тонкого кишечника. Отек и острая эмфизема в легких. Полнокровие слизистой трахеи и бронхов с наличием в их просвете тягучей бесцветной слизи. Местное действие. Пары оказывают сильное раздражающее действие на глаза и верхние дыхательные пути (светобоязнь, лакримация, конъюнктивиты). В области аппликации — локальный мышечный спазм. Кожные 1юраже-ния вызывают боль, дерматиты. Индивидуальная защита. Использование герметичных защитных очков, для защиты кожи — перчатки, нарукавники, передники. Меры профилактики. Самая тщательная герметизация процессов, при которых возможно образование и выделение вещества. Работа только при наличии местных вьггяжных устройств. Первая помощь. При отравлениях — свежий воздух. Промьшание глаз и носоглотки 2% раствором соды. При сильном раздражении слизистой оболочки глаз — закапать 2-3 капли 1% новокаина или 0,5% дикаина с адреналином (1 1000), затем 30% раствор альбуцида. Обильно промыть водой пораженные участки кожи. Консультации с окулистом и при необходимости с дерматологом [c.586]

    Пирокатехин применяется в производстве адреналина, в качестве антисептика, как проявитель в фотографии и как компонент красителя для меха. Метилированием пирокатехина метил-серной кислотой, диметилсульфатом или метанолом получают гваякол. Метилирование пирокатехина метанолом проводится в газовой фазе в присутствии катализаторов - фосфорной или борной кислот, алкилфосфатов или алкилборатов, оксидов бора, нанесенных на инертный носитель (а-А120з, Т10г, активированный уголь). Процесс осуществляется при 200-400 С, селективность образования гваякола 98 % при конверсии пирокатехина около [c.153]

    Хиноны широко распространены в природе к ним относятся регуляторы обмена веществ в грибах и высших растениях (например, витамин К). Они встречаются также в организме животных и получаются здесь окислением оксифениламинокислот. Прочитайте об образовании коричневых и черных пигментов кожи (меланины) из тирозина или адреналина. [c.352]


Смотреть страницы где упоминается термин Адреналин образование: [c.181]    [c.142]    [c.379]    [c.8]    [c.59]    [c.578]    [c.533]    [c.430]    [c.53]    [c.53]    [c.146]    [c.521]    [c.400]    [c.711]    [c.39]    [c.62]    [c.91]   
Биохимия аминокислот (1961) -- [ c.422 ]




ПОИСК





Смотрите так же термины и статьи:

Адреналин



© 2024 chem21.info Реклама на сайте