Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки концевые группы

    Общим фундаментальным механизмом, посредством которого реализуются биологические эффекты вторичных мессенджеров внутри клетки, является процесс фосфорилирования — дефосфорилирования белков при участии широкого разнообразия протеинкиназ, катализирующих транспорт концевой группы от АТФ на ОН-группы серина и треонина, а в ряде случаев—тирозина белков-мишеней. Процесс фосфорилирования представляет собой важнейшую посттрансляционную химическую модификацию белковых молекул, коренным образом изменяющую как их структуру, так и функции. В частности, он вызывает изменение структурных свойств (ассоциацию или диссоциацию составляющих субъединиц), активирование или ингибирование их каталитических свойств, в конечном итоге определяя скорость химических реакций и в целом функциональную активность клеток. [c.290]


    ПодготоЕ ленная путем модифицирования реакцией с -амино-пропилтриэтоксисиланом поверхность достаточно крупнопористого силохрома или силикагеля может быть использована для иммобилизации белков и, в частности, ферментов, нужных для проведения -биокаталитических реакций. Для этого, как указывалось в лек-дии 5, надо провести дальнейшее модифицирование поверхности адсорбента-носителя прививкой агента (глутарового альдегида), способного вступить в реакцию с аминогруппами как модификатора, так и балка. Адсорбент-носитель с привитыми теперь уже альдегидными концевыми группами вводится в реакцию с различными белками. Ра ссмотрим иммобилизацию уреазы — важного фермента, находящего также применение в аналитическом определении мочевины и в аппарате искусственная почка . На рис. 18.9 представлена зависимость активности иммобилизованной уреазы от количества иммобилизованного белка. Адсорбентом-носителем является макропористый силохром со средним диаметром пор 180 нм. Этот размер пор значительно превышает размер глобулы уреазы. Вместе с тем удельная поверхность этого силохрома еще достаточно высока (5 = 41 м /г), чтобы обеспечить иммобилизацию значительного количества уреазы. Из рис. 18.9 видно, что при этом удается иммобилизовать до 120 мг белка на 1 г сухого адсорбента-носителя (это составляет около 3 мг/м ). Активность уреазы снижается не более, чем наполовину, даже при большом количестве уреазы в силикагеле, зато иммобилизованный так фермент можно многократно применять в проточных системах, и он не теряет активности при хранении по крайней мере в течение полугода. [c.341]

    Определение концевых групп. Особое значение для выяснения строения пептидов имеет определение аминокислот, расположенных на концах полипептидной цепи. Если у какого-нибудь пептида или белка найдена одна единственная аминокислота в качестве Ы- или С-концевой группы, то с очень большой вероятностью можно считать его однородным соединением. [c.384]

    Для амфотерных гидроксидов это значение pH, соответствующее изоэлектрической точ е, определяется соотношением констант их диссоциации по кислотному и основному типам. В молекулах белков содержится больщое число различных кислотных и основных групп в боковых цепях образующих их аминокислот, а также концевые группы — КНз и —СООН, имеющие различные значения констант диссоциации. Поэтому ионное состояние белковой молекулы в растворе с некоторым значением pH определяется сложным ионизационным равновесием различных ионогенных групп. [c.252]


    В результате определения концевых групп большого количества белков установлено, что многие простые белковые соединения содержат цепи, в состав которых входит свыше 100 аминокислот. В этом отношении цепи молекулы инсулина, [c.164]

    Химики-органики до настоящего времени не достигли существенных успехов в разработке методов селективного расщепления белков, однако имеющиеся данные о последовательности сцепления аминокислот и стандартизация методов определения концевых групп при расщеплении пептидных связей создают основу для исследования новых методов. Доступность инсулина с точно установленным количественным составом [223] и других белков в сравнительно чистом виде должна послужить стимулом для дальнейшего изучения проблемы селективного расщепления. [c.166]

    Полипептидные цепи состоят из аминокислот, соединенных между собой пептидными связями, т. е. связями между а-ами-ногруппами и а-карбоксильными группами. Существуют открытые, циклические й разветвленные полипептидные цепи. Как правило, открытые полипептидные цепи имеют на од ном. конце свободную а-аминогруппу, а на другом свободную а-карбоксильную группу, которые могут быть обнаружены различными методами определения концевых групп [114, 277, 320]. В разветвленной полипептидной цепи одна из групп в зависимости от характера разветвления может отсутствовать. Большая часть белков представляет собой соединения с открытой цепью [265, 277]. [c.167]

    Аналогичные превращения протекают в реакциях свободных аминогрупп концевых аминокислот в пептидах и белках, например, с 2,4-динитрофторбензолом при гидролизе пептидных связей 8] образующиеся динитрофениловые кислоты можно идентифицировать. О методах определения концевых групп см. раздел 2.3.2.2. [c.239]

    АНАЛИЗ КОНЦЕВЫХ ГРУПП И СТУПЕНЧАТАЯ ДЕГРАДАЦИЯ БЕЛКОВ И ПЕПТИДОВ [c.265]

    ДНФ-фр акцию, полученную из смесей с известным количеством белка или пептида, хроматографируют вместе с определенным количеством контрольных ДНФ-аминокислот, после чего ДНФ-аминокислоты элюируют из бумаги и определяют их содержание фотометрически по калибровочной кривой, построенной для ДНФ-аминокислот. Таким способом можно определить концевые группы белков и пептидов, число полипептидных цепей белков, минимальный молекулярный вес белков и аминокислотный состав белковых гидролизатов. [c.272]

    Первичная структура белков устанавливается методами химической деструкции, в основном методом ступенчатого гидролиза или ферментативной деструкции с помощью различных протеаз . Используя набор различных протеаз , селективно гидролизующих связи между конкретными аминокислотами, изменяя условия ферментативного и химического гидролиза (время, температуру и pH), можно получать различные осколки, на основании которых создается представление об исходной белковой молекуле. Очень важную роль в определении первичной структуры белков сыграли методы определения концевых групп. [c.508]

    Аминокислоты часто использовали в качестве моделей белков, но в действительности они являются близкими моделями лишь для концевых групп, хотя рК свободных аминокислот сильно отличаются от соответствующих значений для концевых групп и боковых цепей в белках. [c.259]

    Восстановление пептидов и белков гидридами металлов как метод определения концевых групп уже обсуждалось [40, 190, 285]. Этот метод наталкивается на ограничения, связанные с ра/з-творимостью реагентов и с возможностью восстановления не только концевой сложноэфирной группы, но и пептидных карбонильных групп. [c.114]

    Белки (концевые группы) Жиры и масла гол яты КОН, NaOH [c.214]

    Ее можно использовать в качестве простой ацильной защиты, как было показано на примере Ы-концевой аминокислоты при биосинтезе белков. Эта группа удаляется при мягкой кислотной обработке, не затрагивающей пептидные связи. [c.75]

    Другие ферменты предпочитают атаковать срединные связи субстрата на достаточном удалении от концов полимерной молекулы. Активный центр таких ферментов можно упрощенно пред-ставит . в виде длинной ложбины или расп елипРз1 па поверхности белковой глобулы, вдоль которой и располагается субстрат, в то время как его концевые группы могут выходить за пределы активного центра или даже молекулы белка. Такие ферменты называют эндоферментами , пли действующими по эндотипу . [c.77]

    Активные группы. — Белки являются характерными амфотер-ными соединениями. В нейтральном растворе основные и карбоксильные группы большей частью ионизированы, как это происходит с биполярными ионами аминокислот. В изоэлектрической точке диссоциация кислотных и основных групп одинакова, растворимость и электрофоретическая подвижность минимальна. Ниже приведена формула гипотетического гептапеп гида, написанная по общепринятым правилам слева аминная концевая группа, справа — карбоксильная  [c.688]

    Определение концевых групп.— Первым подходом к опреде лению последовательности аминокислот в белках и полнпеп тидах был метод Санжера (1945), предложенный для определения концевых аминогрупп. Реагентом для метки служит 2 -динитрофтор-бензол, полученный нитрованием фторбензола. Конденсация протекает в мягких условиях с образованием белка, блокированного остатком [c.690]


    N-Koнцe вoй лизин дает а,е- бис-динитрофенильиое производное лизин, расположенный в середине цепи или на С-конце, дает е-моноди-нитрофенильное производное. Фенольная группа тирозина и имино-группа гистидина также реагируют с динитрофторбензолом, но образующиеся производные расщепляются в условиях кислотного гидролиза пептидной связи. Для определения последовательности аминокислот белок подвергают частичному гидролизу и определяют строение образовавшихся ди- и трипептидов анализом концевых групп. Если в гидролизате охарактеризованы все возможные дипептиды, то последовательность аминокислот в белке может быть однозначно определена без дальнейшего анализа концевых групп. [c.690]

    Время от времени предлагались различные методы определения концевых групп пептидов, основанные на использовании тонких химических реакций. Как правило, эти методы [106, 320] дают лишь низкие выходы или недостаточно разработаны, чтобы их с успехом можно было использовать для исследования природных полипептидов и белков, харак -теризующихся многообразием реакционноспособных боковых цепей. [c.239]

    Сначала определяют концевые аминокислоты белка, особенно важно определить аминоконцевую (или N-кoнцeвyю) АК - это начало белковой молекулы. Важно также знать и число К-концевых групп, так как белок может содержать более одной полипептидной цепи. Для определения аминоконцевых АК используют следующие методы  [c.24]

    Фактором, определяющим силу взаимодействия между двумя молекулами, возможно, даже более важным, чем водородная связь или электростатическое притяжение, является гидрофобное связывание [8,84]. Молекулы или части молекул, недостаточно сольватируемые водой, разрушают сеть водородных связей, составляющую структуру растворителя. Это разрушение снижается в случае сближения таких молекул, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой. Углеводороды, например, образуют отдельную вторую фазу, в то время как детергенты, обычно представляющие собой длннноце-почечные углеводороды с полярными группами с одного конца, образуют мицеллы [9]. Последние представляют собой шарообразные агрегаты молекул с заряженными концевыми группами на поверхности, сольватпрованными водой и с углеводородными цепочками внутри, в контакте только друг с другом. Маленькие неполярные участки или полости на поверхности белка также слабо сольватированы водой, однако они не контролируют состояния агрегации молекулы в целом. Эти участки могут, однако, взаимодействовать с гидрофобными молекулами или частями молекул близкого размера, соединяясь с ними, в результате чего уменьшается общая площадь контакта неполярной поверхности с водой, как это указано выше. При обсуждении трехмерной структуры химотрипсина уже рассматривался пример такого рода (см. с. 488). Вблизи активного центра этого фермента располагается образованный гидрофобными группами карман [46], размер которого позволяет связыванию в нем индольного бокового радикала остатка триптофана. Сам индол прочно связывается в этом кармане (энергия связывания 60 кДж-моль ) [88]. Селективность действия химотрипсина в отношении той или иной пептидной связи в большой степени определяется комплементарно-стью соответствующего бокового радикала аминокислоты этому гидрофобному карману. [c.505]

    ДНФБ — высокореакционноспособное соединение, количественно реагирующее с белками в мягких условиях без побочного расщепления пептидных связей. Поэтому можно не опасаться, что в ходе анализа в результате расщепления пептидных связей появятся новые концевые группы. [c.266]

    Если в ходе анализа получается отрицательный результат, т. е. концевые группы обнаружить не удается, должны быть рассмотрены следующие возможные причины этого 1) исследуемое вещество представляет собой циклическую молекулу и не имеет свободной а-ЫНг-группы 2) молекула имеет малореакционноспособный (заблокированный) N-конец 3) концевая группа ацети-лирована (как, например, в цитохроме с или в белке вируса табачной мозаики) 4) и наконец, возможно, что ДНФ-производное (ДНФ-Про, ДНФ-Гли) разрушилось в ходе определения. Необходимо также учитывать, что выход ДНФ-Вал и ДНФ-Иле невелик из-за устойчивости к гидролизу пептидных связей Вал-Х и Иле-Х в таких случаях следует проводить гидролиз в течение 72 ч. [c.267]

    Анализ концевых групп в белках. Реагеит испачьзуется аналогично фенилизоцпаиату п обладает тем преимуществом для спсктро-фотометрического анализа, что иафтильные производные имеют очень интенсивный максимум поглощения при 222 ммк, [2]. [c.431]

    Завершая краткое обсуждение наиболее типичных свойств эндо- и экзодеполимераз, следует остановиться на рассмотрении механизма деструкции (деполимеризации) полисахаридов. Особенность процесса деструкции заключается в том, что полисахаридные субстраты предоставляют ферментам широкие возможности для способов атаки. Ферменты экзо- типа атакуют концевые участки полимера, последовательно (если нет боковых групп или дефектов мономерных звеньев) отщепляя мономеры или димеры. Можно предположить, что активный центр ферментов экзо- типа представляет собой кархйин , направленный вглубь белковой молекулы, архитектура которого не позволяет вместить более определенного числа мономерных звеньев субстрата. Активный центр ферментов эндотипа можно представить в виде длинной ложбины на поверхности белковой глобулы, вдоль которой и располагается субстрат (его концевые группы могут выходить за пределы активного центра или даже молекулы белка). [c.66]

    Пептидгидродазы, отщепляющие N-концевые аминокислотные остатки пептидов и белков, составляют группу аминопептидаз. Необходимым условием для действия аминопептидаз является наличие у субстрата свободной а-аминогруппы. Ферменты этой группы гидролизуют и дипептиды. В структурных исследованиях белков наибольшее применение нашли лейцинаминопептидаза (ЛАП) и аминопептидаза М (АПМ), выделяемые из почек свиньи. [c.69]

    Гидролитическая деструкция белков и синтетических полиамидов протекает по амидной (пептидной) связи и катализируется щелочами и кислотами. Для деструкции белков можно пользоваться некоторыми ферментами. Конечными продуктами реакции являются аминокислоты или дикарбоновые кислоты и диамины, которые при надобности могут быть опять применены для синтеза полимеров. У полиэфиров основания являются более активными катализаторами, чем кислоты в результате расщепления сложноэфирной связи образуются новые концевые группы ОН и СООН. Полиэфиры, полученные из гликолей и алифатических кислот, более устойчивы к гидролизу, чем полимеры, синтезированные из тех же двухатомных спиртов и ароматических кислот. [c.624]

    Относительную чувствительность аминокислотных остатков в инсулине к "[-излучению исследовали Дрейк и его сотрудники [69]. Как указывалось ранее, интенсивное исследование инсулина особенно желательно, поскольку он является единственным белком, строение которого полностью известно. На основании результатов определений концевых групп, изучения спектров поглощения и хроматографии аминокислот на бумаге в образцах, подвергнутых облучению дозами до 40 мегафэр, были сделаны выводы 1) что цистин, тирозин, фенилаланин, пролин и гистидин обладают высокой радиочувствительностью 2) что лейцин, изолейцин, валин, лизин и аргинин заметно разрушаются при наиболее высоких дозах и 3) глицин и фенилаланин, Н-концевые аминокислоты (т. е. имеющие свободные а-аминогруппы) дезаминируются. [c.227]

    Электрофоретические свойства белка должны изменяться вследствие изменений формы и размеров молекулы, а также вследствие потери заряженных групп при дезаминировании и, возможно, при декарбоксил ировании. Разрыв полипептидной цепи может привести к образованию новых карбоксильных и аминогрупп. Однако природа концевых групп, образующихся при облучении, еще не установлена. Показано, что даже таких малых доз, как 100 р, уже достаточно, чтобы вызвать изменения электрофоретической подвижности [76]. Каррол с сотрудниками [63] не нашли доказательств изменения в отношении заряд — масса в облученном сывороточном альбумине. Гузман [c.228]

    Спектры всех белков имеют большое сходство, но различаются в деталях, что обусловлено, в частности, связыванием малых молекул, свертыванием и развертыванием цепи и другими структурными изменениями. Общее отнесение резонансных сигналов протонов в спектрах белков подобно тому, которое используется для аналогичных малых молекул — аминокислот и пептидов, описанных в гл. 13 (см. табл. 13.1). Отнесение частот для 20 обычно встречающихся в белках аминокислот приведено на рис. 14.2. Эти данные взяты в основном из тщательно выполненной большой работы Мак-Дональда и Филиппса [11] сделаны лишь некоторые уточнения, учитывающие отклонения химических сдвигов для аминокислот в длинных полипептидных цепях по сравнению со свободными аминокислотами или короткими пептидами. Следует учитывать, что приведенные значения относятся к белковым цепям в полностью развернутом неупорядоченном состоянии в предположении (оно почти всегда соблюдается), что отсутствуют взаимодействия между соседними остатками. Для групп, состояние которых в значительной мере определяется протонированием, указан ожидаемый интервал изменений химических сдвигов в области,pH = 1 13. Это относится к протонам кольца гистидина и метиленовым группам, соседним с амино-группами или карбоксильными группами боковых цепей. Химические сдвиги концевых групп, а также про-стетических групп, таких, как гем-группы, не указаны. Не приводятся также сдвиги протонов групп ЫНг, ОН, СООН и МН-групп имидазола, поскольку их сигналы обычно сливаются с сигналом от растворителя вследствие быстрого обмена (см. разд. 13.3.4). Химические сдвиги специфических остатков (кроме тех, которые зави- [c.349]


Смотреть страницы где упоминается термин Белки концевые группы: [c.345]    [c.948]    [c.210]    [c.223]    [c.54]    [c.219]    [c.239]    [c.1067]    [c.286]    [c.256]    [c.270]    [c.744]    [c.478]    [c.574]    [c.266]   
Органическая химия. Т.2 (1970) -- [ c.690 ]

Органическая химия Углубленный курс Том 2 (1966) -- [ c.675 ]




ПОИСК





Смотрите так же термины и статьи:

Белки k-m-e-f-группы

Концевые группы



© 2025 chem21.info Реклама на сайте