Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дебая, силы силы, действующие в растворе

    Согласно теории Дебая — Гюккеля, сильные электролиты полностью диссоциированы на ионы. Однако свободному движению частиц в жидкости препятствуют электростатические силы, действующие между ионами. В растворе, также как и в кристалле, каждый ион окружен ионами противоположного знака, так называемой ионной атмосферой, которая перемещается вместе с центральным ноном и ограничивает его подвижность. В результате электропроводность раствора сильного электролита оказывается меньше той величины, которая должна быть, если бы все ионы могли беспрепятственно перемешаться в электролитическом поле. Следовательно, создается впечатление, что в растворах сильных электролитов число свободных ионов меньше, чем их общая (аналитическая) концентрация. Поэтому для характеристики сильного электролита вводится понятие эффективной (т. е. проявляющей себя в действии) концентрации ионов, называемой также активностью а. Эта величина аналогична концентрации свободных гидратированных ионов (согласно теории электролитической диссоциации). [c.41]


    Адсорбция неорганических ионов на границе раствор — воздух отрицательна. Иону энергетически выгоднее находиться в глубине раствора, чем на его поверхности. Если раствор рассматривать в виде сплошного диэлектрика с диэлектрической постоянной вх, то, согласно П. Дебаю и Л. Онзагеру, силу Р, действующую на ион с зарядом 0 на расстоянии г от границы раздела с другой фазой, имеющей диэлектрическую постоянную б2, можно оценить методом зеркального изображения  [c.91]

    Чтобы описать ион-ионное взаимодействие, необходимо знать распределение ионов в растворе и природу сил, действующих между нонами. Поскольку и ионы, и диполи растворителя находятся в хаотическом движении, а ионы могут образовывать ассоциаты, комплексы и недиссоциированные молекулы, то в общем виде задача о распределении ионов оказывается чрезвычайно сложной. Можно предположить, что электролит полностью диссоциирован (а=1), растворитель представляет собой непрерывную среду с диэлектрической постоянной е, а ионы взаимодействуют в нем только по закону Кулона. В этих условиях вопрос о распределении и взаимодействии ионов в растворах электролитов был решен П. Дебаем и Э. Гюккелем (1923). [c.39]

    Пока ионы находятся в глубине раствора, они расположены более или менее симметрично. Но движение каждого иона тормозится действием ионной атмосферы, которое, по Дебаю, сводится к действию одного иона с зарядом противоположного знака. Поэтому с возрастанием концентрации число ударов движущихся в растворе ионов о стенку сосуда будет уменьшаться. Это объясняется тем, что ионы, находящиеся у стенки, окружены только полусферой, вследствие чего движение иона тормозится силами, направленными в глубину раствора. Такая асимметрия может быть выражена уравнением [c.78]

    Оценка величины отношения корреляционной добавки к максимальной величине макроскопического расклинивающего давления в зазоре, определяемой формулой (VI.33), показывает, что на очень малых расстояниях, составляющих доли дебаевской длины, электростатическое отталкивание между поверхностями раздела может быть заметно ослаблено корреляционным притяжением и в принципе может изменить общий баланс сил, действующих в очень тонких слоях разбавленных электролитов. Так, для поверхностей с потенциалом 25 мВ в 10" М водном растворе одновалентного электролита (радиус Дебая равен 100 А) при h = 20 А 0,5, если концен- [c.183]

    Наиболее обычная трактовка скоростей реакций в растворах, лимитируемых диффузией, была первоначально развита Смолу-ховским [6] для скорости коагуляции коллоидов. Предполагается, что диффузию молекул можно рассматривать как движение макроскопических сферических частиц в вязкой жидкости. Дебай [8] распространил эту теорию на ионные растворы, где необходимо учитывать электростатические силы, действующие на большом расстоянии. [c.20]


    Пренебрежем силами, действующими между полярными молекулами. Это допустимо для разреженных полярных газов и разведенных растворов полярных веществ в неполярных растворителях. Тогда Бд = Боо, [х — Цш, и уравнение (Е, 23) переходит в известное уравнение Дебая  [c.254]

    Роль водородных связей в образовании ионных пар. Отклонения электролитической проводимости больших ионов от предельного закона Дебая — Хюккеля — Онзагера, зависимость коэффициента активности и осмотического коэффициента от концентрации и некоторые другие явления указывают на то, что большие ионы не имеют первичной гидратной оболочки и влияние их вторичной гидратации проявляется главным образом в воздействии на структуру прилегающих к ионам слоев воды, вызывающем повышение упорядоченности. Эти ионы, так сказать, гидрофобны, и их структурообразующее влияние на воду тем больше, чем больше их размеры. Как отмечает Даймонд [48а], в растворах больших ионов, не имеющих первичной гидратной оболочки, образование ионных пар облегчается тем, что в добавление к электростатическому притяжению между их зарядами вода вблизи этих ионов проявляет эффект, способствующий усилению взаимной связи гидрофобных ионов благодаря структурированию. Это добавочное действие обусловлено тем, что водородные связи между молекулами воды стремятся усилить взаимодействие между молекулами и снизить искажения структуры воды. Влияние структуры жидкости, облегчающее ионную ассоциацию, отличается от образования ионных пар по Бьерруму, обусловленному одним лишь действием электростатических сил. Это влияние возникает только в жидкостях, для которых характерно об- [c.508]

    Непоследовательность при введении в учебники новых понятий, связанных с теорией Дебая — Гюккеля, приводит к тому, что руководства часто пишутся смешанным языком, который затрудняет учащихся. Так, например, во многих курсах четко говорится, что сильные электролиты в водных растворах ионизированы полностью. Это положение будет правильно понято только в том случае, если учащимся будет сейчас же разъяснено действие междуионных сил в растворе, дано понятие об ионной силе, изменении диэлектрической постоянной вблизи ионов и т. п. Этот второй шаг в большинстве случаев не делается и учащимся предлагается или а) принимая коэфициенты активности равными единице, неверно, с ошибками, рассчитывать произведения растворимости по растворимостям солей и т. п., или же б) вновь возвращаться к старой теории, вводя представление о кажущейся степени ионизации . [c.40]

    В настоящее время принята теория Дебая и Гюккеля. Дебай и Гюккель исходят из двух основных предпосылок во-первых, они принимают, что растворы сильных электролитов диссоциированы нацело при всех разведениях, и, во-вторых, все отклонения в поведении таких растворов они объясняют электростатическими силами, действующими между ионами. [c.10]

    Рассмотрим теорию [121], основанную на предположении, которое будет критически проверено ниже, что растворы достаточно разбавлены для того, чтобы молено было учитывать лишь электростатические силы дальнего действия. Эти силы заставляют окружающие ионы образовать вокруг центрального диполя, который, допустим, представляет собой переходное состояние ионизации при мономолекулярном механизме, слабую ионную атмосферу . Если эта слабая ионная атмосфера образуется вокруг центрального однозарядного иона, то, согласно теории Дебая, можно определить коэффициент-активности с помощью следующего уравнения  [c.402]

    Для описания взаимодействия ионов в растворе электролитов необходимо знать их распределение в растворе и природу сил, действующих между ними. Поскольку ионы раствора находятся в хаотическом движении, то задача о распределении ионов в общем виде оказывается чрезвычайно сложной. Вопрос о распределении и взаимодействии ионов в растворах электролитов был решен П. Дебаем и Э. Хюккелем (1923) при следующих предположениях электролит полностью диссоциирован, растворитель представляет собой непрерывную среду с диэлектрической постоянной е, ион-ионное взаимодействие подчиняется закону Кулона. [c.255]

    Мильнер 11 ] пытался произвести математический расчет электростатических сил, действующих между ионами, но его теоретические положения привели к серьезным математическим затруднениям. Более удачно теория междуионного притяжения была сформулирована Дебаем и Хюккелем [2]. Дальнейшее развитие этой теории в отношении к электропроводности растворов, было произведено Онзагером [3]. [c.317]

    Согласно теории Дебая—Гюккеля, которую мы потом рассмотрим подробнее, каждый ион в растворе можно считать окруженным атмосферой , в которой преобладают ионы противоположного знака. Как же возникает эта атмосфера Поскольку расстояния между ионами невелики, между ними действуют кулоновские силы притяжения (в случае противоположно заряженных ионов) и отталкивания (для одноименно заряженных ионов). [c.193]


    Соотношение (4.3) справедливо лишь для слабых электролитов с электрической проводимостью, пропорциональной числу ионов в растворе для растворов сильных электролитов, ионы которых в растворе взаимодействуют, оно непригодно. Количественный учет межионного взаимодействия произвели П. Дебай и Е. Хюккель. Они создали достаточно стройную теорию электростатического взаимодействия гидратированных ионов в растворе, получившую дальнейшее развитие (главным образом в отношении электрической проводимости растворов) в трудах Л. Онзагера. В соответствии с основными положениями этой теории взаимодействие ионов рассматривается не только с позиций электростатического притяжения или отталкивания, но и теплового движения, которое стремится разрушить упорядоченное чередование положительно и отрицательно заряженных ионов. В результате действия этих двух сил каждый ион одного знака (рис. 4.1, а) будет окружен диффузной сферой из ионов другого знака. [c.81]

    Согласно теории сильных электролитов Дебая — Хюккеля, каждый ион полностью диссоциированного электролита окружен ионами, создающими поле противоположного знака. Такое распределение ионов в пространстве называется ионной атмосферой. При наложении внешнего поля центральный ион и ионная атмосфера, как обладающие зарядами, одинаковыми по величине, но обратными по знаку, движутся в противоположные направления. Силы меж-ионного взаимодействия вызывают торможения, растущие с увеличением концентрации, и, следовательно, уменьшающие эквивалентную электрическую проводимость. Движение ионной атмосферы в сторону, противоположную центральному иону, вызывает электрофоретическое торможение, обусловленное движением сольватированного иона против потока сольватированных ионов ионной атмосферы. Второй эффект торможения обусловлен нарушением симметрии расположения ионной атмосферы вокруг центрального иона при его движении под действием поля. Движение приводит к разрушению ионной атмосферы позади иона и образование ее на новом месте. Для этого требуется время релаксации, и потому позади движущегося иона всегда находится некоторый избыток заряда противоположного знака, тормозящего его движение. Это торможение называют релаксационным. На скорость движения иона в растворе влияет вязкость среды, создавая дополнительный эффект трения, который учитывается уравнением Стокса /т = 6ят]гу, где /т — спла трения т) — вязкость растворителя г — радиус иона V — скорость движения иона. [c.272]

    Отметим, что в теории Дебая—Хюккеля и Бьеррума фигурировала диэлектрическая постоянная ер чистого растворителя, что имеет смысл для разбавленных растворов. Однако Дебай и Полинг в дальнейшем показали, что при повышении концентрации изменением ер пренебрегать нельзя. Качественная картина влияния зарядов ионов на диэлектрическую постоянную, данная Хюккелем, сводится к рассмотрению влияния деформации полей, связанных с молекулами растворителя, за счет влияния на них соответствующих ионных сил. При сближении ионов друг к другу связанные с ними поля деформируются и деформируют поля окружающих их молекул растворителя. Взаимная деформация ионов в вакууме вела бы к дополнительному их притяжению вследствие возникновения электрических сил поляризации, действующих в одном направлении с кулоновскими межионньши силами. [c.400]

    Со времени появления первоначальной работы Дебая и Гюккеля теория растворов, не подверженных действию внешних полей, неоднократно излагалась в упрощенном виде [18]. Хотя такой упрощенный подход пригоден для случая равновесия, он является недостаточно общим для теории растворов, находящихся под действием внешних сил, например для вычисления электропроводности. Кроме того, если не уточнить систему обозначени11, то характер многих важных допущений теории междуионного притяжения останется невыясненным. Этот недостаток можно исправить, если воспользоваться более тщательно разработанной системой обозначений, предложенной Онзагером и Фуоссом. Хотя применение этой системы обозначений и создает вначале большие трудности, оно в конечном счете приводит к более строгому и ясному пониманию теории. [c.34]

    Для вычисления электрофоретического эффекта Онзагер и Фуос [59] применили функцию раопределения ионов, предложенную в теории Дебая—Хюккеля. Если раствор как целое неподвижен, силы fe и а, действующие на катионы и анионы соответственно, равны силе fw, действующей на молекулы воды, и если число атионов, анионов и молекул воды в единице объема раствора равно Пс, Па и м соответственно, то выполняется соотношение [c.349]

    Важно отметить, что коэфициент активности может быть найден двояким путем. Во-первых, его величина может быть найдена из сравнения опытных данных с теми, которые вытекают из термодинамических формул. Этот эмпирический путь свободен от всяких гипотез и базируется лишь на достаточно достоверной правильности термодинамики. Несколько наиболее важных путей в применении к электролитам описаны в 182, Во-вторых, коэфициент активности может быть вычислен на основании вышеприведенных соображений, если построить правильную теорию действия тех сил, которые ответственны за нарушение законов идеальных газов. Правильность этой теории может быть проверена по совпадению коэфициентов активности, вычисленных этим путем, с теми, которые получены эмпирически первым способом. До сих пор удалось количественно учесть лишь те междуиональные силы, которые отклоняют растворы свободных ионов от идеального состояния (излагаемая ниже теория электролитов Дебая и Гюккеля). Результаты сравнения коэфициентов активности, найденных обоими путями для таких систем, ниже излагаются. [c.316]

    Если подробнее изучить коагулирующее действие одновалентных ионов на гидрофобный золь, то наблюдается определенный лиотропный ряд. Папада нашел, что коагулирующее действие хлористых солей различных катионов на отрицательно заряженные золи может быть расположено в следующий ряд Сз > КЬ > К > На > Вет и Балкема, которые изучали влияние солей калия на положительно заряженный золь золота, нашли следующий ряд С1>Вг>1>СЫ5. Левин и Ленгмюр независимо изучали роль электрических сил в стабильности коллоидных растворов. Ленгмюр исследовал силы притяжения и отталкивания между неограниченными плоскими частицами, а Левин изучал те же силы между сферическими и цилиндрическими частицами. Их методы вычисления по существу аналогичны методу, применявшемуся Дебаем и Гюккелем при вычислении сил, действующих между ионами в растворах. Математические детали их вычислений мы здесь приводить не будем. [c.266]

    Теория полной диссоциации и междуионное притяжение. Теория Дебая и Гюккеля. Если принять, что сильные электролиты полностью диссоциированы, то как объяснить, что эквивалентная электропроводность уменьшается при увеличении концентрации раствора. Аррениус объяснял это явление уменьшением степени диссоциации электролита. Дебай и Гюккель (1923), приняв теорию полной диссоциации, приписали изменения электропроводности с разбавлением электрическим силам, действующим между ионами. В растворе каждый ион окружен ионной атмосферой пз противоположно заряженных ионов, и притяжение, которое они оказывают, замедляет скорость передвижения ионов. Силы притяжения увеличиваются с увеличением концентрации раствора, так как расстояние между ионами уменьшается. Вследствие этого происходит понижение эквивалентной электропроводности и кажущееся уменьпхение степени диссоциации. И наоборот, при разбавлении раствора раЬстояние между противоположно заряженными ионами возрастает, электростатическое взаимодействие ионов становится все более слабым и эквивалентная электропроводность увеличивается. Наконец, при бесконечно больших разбавлениях межионные силы становятся ничтожно малыми вследствие относительно больших расстояний между ионами и по этой причине эквивалентная электропроводность достигает максимальной величины. Итак, Аррениус принял, что скорость передвижения ионов остается постоянной, но с изменением концентрации изменяется их число. Дебай и Гюккель утверждают, что при изменениях концентрации раствора число ионов остается постоянным, но скорости их передвижения изменяются под влиянием электростатического взаимодействия ионов. [c.55]

    Для вычисления электростатического потенциала щ иона к-го сорта относительно окружающей его ионной атмосферы Дебай и Хюккель ввели два приближения, позволяющие применить уравнение Пуассона, что существенно упрощает задачу. Первое приближение заключается в замене точечных зарядов ионов непрерывно распределенным зарядом переменной плотности. Второе — в предположении действия кулоновского поля, сог.пасно которому два точечных заряда взаимодействуют друг с другом с силой, обратно пропорциональной квадрату расстояния. Рассмотрим 1 см раствора, содержащий Л/ь Л/г,. .., Л/ - ионов каждого сорта с валентностями 21, 22,. . ., 2j. [c.391]

    Исследуя химические реакции, катализируемые слабыми кислотами, С. Аррениус обнаружил усиление каталитического эффекта при добавлении в раствор нейтральных солей, не содержащих одноименных с кислотой анионов. Это явление называется первичным солевым эффектом. В то же время он наблюдал, что добавление соли слабой кислоты, подавляющее диссоциацию и снижающее концентрацию ионов водорода, уменьшает скорость каталитического процесса существенно меньше, чем следовало из закона действия масс (вторичный солевой эффект). Для истолкования вторичного солевого эффекта предполагают, что каталитической активностью обладают не только ионы водорода (или гидроксила), но и анионы, молекулы недиссоциированных кислот (или оснований) и молекулы воды. Первичный солевой эффект был объяснен Я- Брёнстедом и Н. Бьеррумом. Используя уравнение Дебая — Гюккеля для коэффициента активности, они показали, что логарифм константы скорости к реакции между двумя ионами линейно зависит от корня квадратного из ионной силы раствора  [c.85]

    Введение в коллоидные растворы индифферентных солей сопровождается двумя явлениями 1) ионным обменом между противоионами ДЭС и ионами добавленного электролита 2) сжатием диффузной атмосферы вокруг поверхности частиц. В качестве примера рассмотрим процессы, происходящие при добавлении раствора NaNOa к золю Agi с отрицательно заряженными частицами. В таком золе противоионами могут служить, например, катионы К . Между введенными ионами Na+ и противоионами ДЭС — катионами К" — происходит ионный обмен. Взаимодействие ионов и Na+ с ионами 1 , являющимися потенциалобразующими, примерно одинаково, поэтому их взаимный обмен подчиняется в основном закону действующих масс. Диффузный слой содержит смесь тех и других ионов. Однако здесь проявляется и другая сторона действия электролита. Добавка электролита приводит к повышению ионной силы раствора. Согласно теории Дебая—Хюккеля, с повышением ионной силы раствора уменьщается толщина ионной атмосферы и происходит сжатие диффузной части ДЭС. При этом некоторое число противоионов переходит из диффузного слоя в адсорбционный. Следствием такого распределения противоионов является снижение величины -потенциала (рис. 25.3, /), в то время как величина и знак ф-потенциала поверхности частиц остаются практически постоянными. Влияние электролитов усиливается, если в их составе имеются многозарядные ионы ( u" +, Са" +, АГ +, Th + ). Многозарядные катионы более активно взаимодействуют с отрицательными зарядами (в данном случае с ионами 1 ). Вследствие этого такие ионы вытесняют ионы К" " из Диффузного и адсорбционного слоев в раствор, становясь на их место. При этом падение -потенциала происходит быстрее, чем при действии однозарядных ионов (рис. 25.3,2). При добавлении электролитов с ионами, имеющими заряд 3, 4 и более, может происходить не только снижение -потенциала до нулевого значения, но и перемена знака заряда (рис. 25.3, [c.401]

    Классическая теория Аррениуса оказалась недостаточной для объяснения свойств растворов сильных электролитов. Ранее изложенные предс1а-вления о диссоциации электролитов в растворе и о сольватации каждого иона Дебай и Гюккель дополнили теорией , согласно которой в таких растворах действуют электростатические силы притяжения между разноименными ионами и силы отталкивания между одноименными. [c.33]

    Современная теория электролитов, называемая еще статистической теорией электролитов, связана с именами Дебая и Гюкке-ля. В ней обращено особое внимание на то, что в растворах электролитов имеются заряи<енные частицы и что здесь поэтому действуют не только силы теплового характера, но и силы электростатические, вызванные присутствием заряженных частиц. Одна из основных причин, обусловивших трудности в классической теории, состояла в том, что в ней учитывались только силы теплового характера. Применение выражения pV=RT к растворам электролитов означало, что ионы в растворе обладают кинети- [c.290]

    Это неподчинение объясняет теория сильных электролигпоо, предложенная Дебаем и Хюккелем (1923). Согласно этой теории сильные электролиты п водных растворах нацело диссоциируют на иоиы. В этом случае концентрация ионов в растворе сравнителыю большая. Между противоположно заряженными ионами действуют электростатические силы притяжения (у незаряженных частиц — межмолекулярные силы). В результате каждый пон окружается ионной атмосферой , состоящей из ионов противоположного заряда. Наиример, в растворе хлорида натрия вокруг движущихся ионов Na" создается атмосфера из хлорид-ионов С1 , а вокруг движущихся хлорид-ионов — из понов Na +. Это уменьшает подвижность ионов. [c.166]

    В настоящее время отступление сильных электролито от классической формы закона действия масс может быть объяснено при помощи теории сильных электролитов, предложенной Дебаем и Гюккелем. Основная идея теории заключается в том, что между ионами, образующимис при электролитической диссоциации сильных электроли тов, возникают силы взаимного притяжения. Эти меж ионные силы вызывают отклонение поведения сильные электролитов от законов идеальных растворов. [c.139]

    Теория Дебая — Хюккеля ни в кое.ч случае не ограничена водными растворами, ио, поскольку вода имеет высокую относительную диэлектрическую проницаемость II поэтому в ней действуют слабые кулоновскис силы, эта теория применима при достаточно высоких концентрациях. Каково расстояние экранирования в случае 0,001 моль/кг раствора иотида магния в жидком аммиаке прн —ЗЗТ, Плотность растворителя равна 0,69 г/см п Л г=22. [c.378]

    Это позволяет нам записать образование комплексов как ступенчатое присоединение лигандов, а не как замещение лигандов, поскольку высвобождаемую воду можно исключить из соответствующего выражения закона действующих масс. Дело в том, что в обьпных условиях работы с растворами постоянной НОННОЙ силы активность воды в растворе не меняется. ТЪгда формальную реакцию комплексообразования вьфажают с помощью ступенчатой константы комплексообразования К, и соответствуюшдх общих констант pi или Используя эти константы, следует применять те же понятия активности, которые мы обсуждали в связи с подходом Силлена для среды с постоянной ионной силой, теорией Дебая—Хюккеля для бесконечно разбавленных систем и рассмотрением кислотно-основных равновесий  [c.165]

    Второй эффект действия солей, как указывалось, определяется изменением ионной силы раствора при добавлении к нему электролита. В соответствии с теорией Дебая—Гюккеля, повышение- концентрации электролитов, особенно содержащих многовалентные ионы, вызывает уменьшение толщины (1/л) ионной атмосферы или сжатие диффузной части двойного электрического слоя. В результате сжатия все более значительное количество компенсирующих ионов оказывается в пределах гельмгольцевской части двойного электрического с.чоя. Поэтому измеряемая величина С-потенциала падает и при полном сжатии диффузной части двойного слоя южeт дойти до нуля даже при неизменном Значении зарядов на поверхности частицы. [c.117]

    Если один из реагентов представляет собой нейтральную молекулу, так что 2а б=0, то, согласно уравнению (3.8), ионная сила не влияет на константу скорости. Этот вывод справедлив для сильно разбавленных растворов. В случае же более высоких концентраций ионов может наблюдаться изменение константы скорости. Дело в том, что при высоких концентрациях теория Дебая — Хюккеля уже не может описать поведение коэффициентов активности и, кроме того, коэффициенты активности нейтральных молекул изменяются под действием высокой ионной силы. Примером может служить реакция кислотного гидролиза Y бyтиpoлaктoнa, скорость которой зависит от концентрации соли. Для ряда солей логарифм константы скорости этой реакции прямо пропорционален первой степени ионной силы. При этом сульфат и хлорид натрия увеличивают константу скорости, а иодид и перхлорат натрия снижают ее. [c.42]

    Под влиянием развернувшейся дискуссии по поводу теории Д. Гоша профессор физики Высшей технической школы в Цю рихе П. Дебай (1884—1966) совместно со своим ассистентом Э. Хюккелем (1896) начал в 1918 г. теоретические исследования растворов сильных электролитов. В 1923 г. разработанная ими теория была опубликована. Отправными положениями новой теО рии было, во-первых, допущение, что ионы в растворах находятся в электрическом взаимодействии и поэтому распределены (в объёме) в определенном порядке, отличном от хаотического распределения молекул в газе. Это возникает вследствие того что вокруг отдельных ионов под влиянием электростатических сил образуется облако из ионов противоположного заряда. Если теперь ион под влиянием приложенного электрического поля приобретает движение, то окружающее его ионное облако деформируется, а затем распадается. Одновременно вокруг иона возникает новое облако ионов противоположного знака. Исчезновение первоначального облака требует некоторого времени (время релаксации), вследствие чего позади движущегося иона всегда остается рой ионов противоположного заряда, оказывающих тормозящее действие на рассматриваемый движущийся ион. Этот ион будет испытывать также тормозящее действие, оказываемое ионами противоположного знака, двигающимися (в электрическом поле) в обратном направлении. Общее действие обоих факторов на уд еньшение подвижности иона оказывается пропорциональным Ус, где с — концентрация ионов. [c.245]


Смотреть страницы где упоминается термин Дебая, силы силы, действующие в растворе : [c.149]    [c.114]    [c.64]    [c.152]    [c.118]    [c.114]    [c.48]   
Газо-жидкостная хроматография (1966) -- [ c.0 ]

Газо-жидкостная хроматография (1966) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Дебай

Дебая силы



© 2025 chem21.info Реклама на сайте