Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кривая для стеклообразных полимеров

    Рассмотрение кривых деформации изотактического по-листирола 5 (рис. 97) показывает, что при температурах выше температуры стеклования эти кривые аналогичны кривым для полиамидов, полиэтилена и других кристаллических полимеров. При температурах ниже Гс кривые e=f a) напоминают кривые стеклообразных полимеров. [c.239]

Рис. V. 18. Кривые растяжения стеклообразного полимера выше (I) и ниже (2) температуры хрупкости. Рис. V. 18. <a href="/info/22959">Кривые растяжения</a> <a href="/info/56310">стеклообразного полимера</a> выше (I) и ниже (2) температуры хрупкости.

    Типичная кривая растяжения стеклообразного полимера в координатах напряжение — деформация приведена на рис. V. 18 (кривая /). Условно ее можно разбить на несколько участков. [c.156]

    Если при снятии термомеханической кривой не происходит термодеструкция полимера, то при медленном охлаждении можно воспроизвести термомеханическую кривую образец переходит сначала в высокоэластическое, а затем в стеклообразное состояние (стеклуется). Очень важно то, что при температуре ниже температуры стеклования полимер, как правило, сохраняет некоторый комплекс свойств, присущий только полимерам. Мы говорим, что полимер застекловался, но он не стал хрупким, как обычное силикатное (оконное) стекло. Лист органического стекла (полиметилметакрилат, плексиглас) можно бросить на пол, и он не разобьется вдребезги. И все-таки стеклообразный полимер можно охладить до такой температуры, когда он будет легко разбиваться при ударе. Такая температура носит название температуры хрупкости Тхр-На термомеханической кривой она не проявляется в виде какой-либо характерной точки. Методы определения температуры хрупкости всегда так или иначе связаны с разрушением образца. [c.102]

    Переход полимера в стеклообразное состояние при охлаждении носит название структурного стеклования. Это значит, что этот переход сопровождается фиксацией определенной структуры, определенного ближнего порядка, которые не меняются при дальнейшем охлаждении. Фиксация структуры, исключение возможности ее перестройки при охлаждении делает стеклообразный полимер неравновесным. Это, в первую очередь, приводит к зависимости Тс от скорости охлаждения. При медленном охлаждении сегменты ус певают перемещаться даже при приближении к Т с и требуется сильно охладить полимер, чтобы предотвратить всякие перестройки структуры. Излом на кривой зависимости удельного объема от Т (см. рис. 10.1) сместится в область более низких температур. Так, выдерживая образец поливинилацетата прн каждой температуре в одном опыте в течение 0,02 ч, а в другом 100 ч, получим значения Т с соответственно 32 и 23°, т. е. отличающиеся на 9°. [c.143]

Рис. 10.2. Схематическое изображение кривой напряжение — деформация стеклообразного полимера Рис. 10.2. <a href="/info/376711">Схематическое изображение</a> <a href="/info/72986">кривой напряжение</a> — <a href="/info/717446">деформация стеклообразного</a> полимера

    Кривая, схематически изображенная на рис. 10,2, является полной кривой а—е стеклообразного полимера. Часто полную кривую не удается получить, поскольку образец разрывается уже на второй стадии деформации. [c.149]

Рис. 10.5. Влияние температуры на вид кривых напряжение — деформация для стеклообразных полимеров Рис. 10.5. <a href="/info/15368">Влияние температуры</a> на вид <a href="/info/72986">кривых напряжение</a> — деформация для стеклообразных полимеров
    Как и в случае стеклообразных полимеров, кривая напряжение-деформация кристаллического полимера делится на три участка, отражающие три стадии процесса растяже- [c.184]

    Возвращаясь к удельным поверхностям аэрогелей аморфных стеклообразных полимеров, следует отметить интересные особенности адсорбции криптона на аэрогеле полифенилсилоксана [4]. В то время как на полистироле криптон во всех случаях адсорбировался обратимо, так что адсорбционные и десорбционные точки ложились на общую кривую, при адсорбции на полифенилсилоксане обратимая изотерма адсорбции криптона получалась лишь в тех случаях, когда образец оставался непрерывно погруженным в жидкий азот (рис. Ъа, б). Если же во время опыта жидкий азот удалялся и образец некоторое время выдерживался [c.616]

    С точки зрения оценки эффективности смешения разных полимеров для получения материала с хорошими прочностными свойствами можно отметить следующее. Смеси кристаллических полимеров и смеси стеклообразных полимеров имеют пониженные значения прочности, и как правило, малые значения относительного удлинения при разрыве. Однако такой вывод справедлив только в том случае, когда оценивается кривая прочность — состав во всем интервале соотношений компонентов, причем состав варьируется обычно через 20— 25%. В ряде случаев нри добавлении малого количества одного стеклообразного полимера к другому можно получить эффект усиления, как, например, при введении нескольких весовых частей порошка полиамида ПА-68 в ПС [169] или нескольких процентов ПС, ПЭ в волокно из ППр [81], или 1—5% каучука в полиарилат [214]. [c.37]

    Для аморфных стеклообразных полимеров вид деформационных кривых сохраняется как при растяжении в активных жидкостях, так и при хрупком разрушении на воздухе. Разрушение этих полимеров в жидкости происходит при меньших напряжениях, чем на воздухе, и сопровождается интенсивным растрескиванием поверхности. Кристаллические эластомеры, характеризующиеся большими деформациями растяжения, более чувствительны к действию жидких сред различной химической природы. Изменение их деформационного поведения в жидкостях может выражаться в уменьшении начального модуля при растяжении (только в растворителях), в снижении предела вынужденной эластичности и напряжения развития шейки, в увеличении или уменьшении предельной деформации при разрыве. [c.163]

    Аморфные полимеры. Типичная термомеханическая кривая аморфного полимера представлена на рис. 1.6. По этой кривой можно довольно четко выделить температурные области, в которых полимер находится в стеклообразном (ниже температуры Tg), каучукоподобном (область между Тд ц Tf] и вязкотекучем (выше температуры Г/) состояниях. Деформация образца при температуре, меньшей температуры стеклования, настолько мала, что этот участок термомеханической кривой практически сливается с осью абсцисс. Нижнему пределу области каучукоподобного (высокоэластического) состояния соответствует температура, при которой начинается рост деформации. Термомеханическая кривая вначале довольно круто поднимает- [c.22]

    Зависимость теплопроводности некристаллизующихся полимеров от температуры описывается непрерывной кривой с широким максимумом вблизи температуры стеклования Тс (см. приведенную кривую на рис. I. 1). Монотонное возрастание значения К стеклообразных полимеров при повышении температуры до Т Тс объясняется увеличением члена С в уравнении [5] [c.8]

    Релаксационные свойства стеклообразных полимеров накладывают характерный отпечаток на их деформационные характеристики. Стеклование наступает, когда энергия теплового движения элементов структуры полимера уже неспособна преодолеть силы взаимодействия между участками макромолекул. Благодаря свернутой конформации макромолекул аморфных полимеров при уменьшении подвижности их звеньев и сегментов неизбежно сохраняется рыхлость их упаковки после стеклования и эта рыхлость тем больше, чем меньше гибкость макромолекулы. Рыхлостью обусловлены различия во взаимодействиях между участками макромолекул в областях пустот они сильно снижены. Поэтому при медленном деформировании аморфного стеклообразного полимера будут преодолеваться силы, действующие между близко соприкасающимися друг с другом участками макромолекул, а сами макромолекулы начнут распрямляться при действии растягивающего усилия. Это распрямление обусловлено существованием сегментов с пониженным взаимодействием друг с другом и возможностью преодоления этого взаимодействия за счет теплового движения при низких температурах. Таким образом, на кривой нагрузка — удлинение аморфного стеклообразного полимера должен существовать участок развития сравнительно большой деформации за счет выпрямления свернутых макромолекул. Это и наблюдается на опыте (рис. 53). [c.110]


    Как видно из рис. 53, существуют три характерных области на кривой деформации аморфного стеклообразного полимера. Первая область (/) характеризуется пропорциональной зависимостью между напряжением и удлинением, причем угол наклона к оси абсцисс [c.110]

Рис. 53. Кривая растяжения аморфного стеклообразного полимера 0в.э — предел вынужденной эластичности Рис. 53. <a href="/info/22959">Кривая растяжения</a> <a href="/info/1808055">аморфного стеклообразного полимера</a> 0в.э — <a href="/info/56685">предел вынужденной</a> эластичности
    Релаксационные явления могут сильно менять вид кривых ст— е для кристаллических полимеров, подобно тому как это наблюдалось для стеклообразных полимеров. Снижение температуры или [c.123]

    Деформационные свойства кристаллических полимеров. Кристаллические полимеры, как было сказано в гл 1, состоят из кристаллических и аморфных участков Кристаллические участки деформируются как упругие твердые тела за счет смещения атомов в решетке, деформации связей и углов. Аморфные прослойки в зависимости от условий (температуры и скорости) могут деформироваться как стеклообразные при Г Гс), высо-коэластические (Гт>7 >7 с) или вязкотекучис (7 >Гт)- Кристаллические полимеры отличаются от аморфных повышенными значениями модуля упругости, пО Шженной податливостью, меньшей восстанавливаемостью. Но сочетание жестких кристаллических и податливых (аморфных) участков делает кристаллические полимеры менее хрупкими, чем стеклообразные. Деформационная кривая кристаллического полимера по внешнему виду напоминает кривую стеклообразного полимера (рнс. 5.28). На ней также можно выделить три участка. На первой стадии расгяжс.чия (линейный участок) развиваются упругие обратимые деформации, увеличивающие свободный объем в полимере. Модуль упругости (наклон прямой) тем больше, чем выше степень кристалличности. На этой стадии разрушается исходная кристаллическая структура На // стадии проис.ходит перестройка исходной кристаллической структуры и образование новой в условиях напряженного состояния Этот процесс называется рекристаллизацией. Образец в каком-то месте (на [c.314]

    Переход полимера в кристаллическое состояние приводит к потере им высокоэластических свойств. Типичные термомеханические кривые кристаллических полимеров представлены на рис. V. 6. Ниже Т л деформация, развивающаяся в кристаллическом полимере под действием небольшой нагрузки, мала. В полимерах с высокой степенью кристалличности переход из стеклообразного состояния в высокоэластическое мало влияет на механические свойства материала. Существенные изменения свойств кристаллических полимеров наблюдаются в области температуры плавления. При температуре плавления кристаллическая фаза полимера исчезает, деформируемость образца резко возрастает. Если степень полимеризации полимера сравнительно невысока, так что его Гт оказывается ниже Тпл, то при плавлении он сразу переходит в вязкотекучее состояние (см. рис. V. 6, кривая 2). При достаточно высоких степенях полимеризации Тт может оказаться выше Гпл. Тогда между Тпл и Тт на термомеханической кривой появляется плато вы-сокоэластичности (см. рис. V. 6, кривая /). [c.142]

    На рис. 10.2 приведена кривая напряжение — деформация стеклообразного полимера. Весь процесс растяжения условно делится на три стадии. На первой стадии полимер растягивается упруго. Деформация достигается за счет увеличения межмолекулярных расстояний, валентных углов или малого смещения (без разрушения) узлов флуктационной сетки. Происходит увеличение свободного объема при неизменной температуре за счет действия механических напряжений. На рис. 10.3 схематически изображен внешний вид образцов на разных стадиях растяжения. Видно, что на первой стадии не происходит изменения формы образца он удлиняется как единое целое. Деформация на первой стадии составляет доли процента или несколько процентов. [c.147]

    Для стеклообразных полимеров особенно важна способность выдерживать длительное действие внешней силы (нагрузки) при сохранении размеров в заданных пределах. Это определяется величиной и закономерностями ползучести. На рис. 10.6 показаны кривые ползучести полистирола при разных нагрузках. Видно, что при нагружении мгновенно увеличивается длина образца за счет развития упругой деформации (деформация пружины). Далее развивается замедленная упругость, качественно аналогичная развитию высокоэластической деформации (элемент Кельвина — Фойхта). Эта замедленная упругость характеризует развитие вынужденно-эластической деформации. Далее возможны два случая либо деформация перестает увеличиваться после достижения определенной величины, либо она развивается непрерывно. В первом случае мы говорим, что имеет место затухающая ползучесть, во втором случае — незатухающая ползучесть. Последняя развивается как за счет истинно необратимой, так и за счет замедленной вынужденноэластической деформации без образования шейки. Полимер может применяться как конструкционный материал только в том случае, если под действием заданной нагрузки в нем развивается затуха- [c.151]

    Хрупкий стеклообразный полимер, например полистирол (ПС), деформируется до разрушения по кривой типа кривой / на рис. 12.16, б. Это типичная кривая хрупкого разрушения. Однако тот же полистирол прн более высокой температуре может обнаружить явление вынужденно-эластической деформации (см. гл. 10) и дефор-мироватьс ч по кривой типа кривой / па рнс. 12.16, а. При этом образуется шейка так же, как у полиэтилена высокой плотности. Макромолекулы полистирола в шейке также ориентированы в направлении растяжения. Если теперь из шейки вырезать образец и испытать его отдельно при обычной температуре, снян кривую а— к, то эта кривая будет иметь вид кривой 2 на рис. 12.16, о. Видим, [c.192]

    При вынужденно-эластической деформации некоторых стеклообразных полимеров (например, ацетата и [1цтрата целлюлозы) образования шейки не наблюдается. На деформ а гшон ной кривой в таких случаях отсутствует максимум (рис. 87). [c.211]

    Термомехаиическая кривая для полимеров выглядит несколько сложнее. Она изображена на рис. 85. Полимерам свойственно, как было указано ранее, новое состояние вещества — высокозластиче-ское, обусловленное гибкостью макромо-лекулярных цепей. Оно характеризуется изменением деформируемости материала, т. е. изменением его модуля упругости. Находясь в высокоэластическом состоянии, полимер способен к большим по величине и обратимым деформациям. Это состояние вклинивается между стеклообразным и вязко-текучим состоянием и разделяет температуры стеклования и текучести. Таким образом, полимеры в отличие от низкомолекулярных тел переходят из стеклообразного не в вязко-текучее, а сначала в высокоэла-стическое состояние. Температурный интервал, в котором полимеру свойственна высокая эластичность, зависит от гибкости цепей, т. е. от его химической, природы. [c.252]

    Кроме того, в результате уменьшения а и увеличения времени воздействия среды может возрастать относительная роль объемной диффузии и снижаться неравномерность напряженного состояния в образце. Объемная диффузия среды в полимер сопровождается более равномерным ослаблением связей в полимерном образце. Перенапряжения, первоначально возникающие в вершине трещин, в результате облегчения релаксационных процессов при набухании резко падают. В зависимости от растворяющей активности среды разрушение будет иметь, вероятно, псевдохрупкий характер с наличием трещин или характер пластического течения без заметного трещинообразования. Но в обоих случаях ст,, будет отсутствовать. Это обусловливает пересечение кривой 3 (сплошная и пунктирная) с осью ординат при ст = О, что примерно соответствует времени потери прочности ненапряженного (внешней нагрузкой) образца в результате набухания или растворения. Следует заметить, что при воздействии растворителей, в которых стеклообразный полимер достаточно сильно набухает, хрупкое разрушение с образованием трещин может наблюдаться и при очень малых ст и даже при ст = 0. Это происходит в результате значительной разницы объемов набухшего и ненабухшего за-стеклованного слоев полимера и возникновения на их границе значительных внутренних напряжений (см. раздел П.1). [c.132]

Рис. IV. 17. Деформационные кривые растяжения аморфных стеклообразных полимеров (ПММЛ, ПК) на воздухе (/) и в яидкости (2, 3) кристаллических эластомеров (ПЭ, фторопласт-42) на воздухе (4), в поверхностно-активной среде (5, в) и в жидкостях, вызывающих набухание (7). Рис. IV. 17. <a href="/info/56309">Деформационные кривые</a> растяжения <a href="/info/1808055">аморфных стеклообразных полимеров</a> (ПММЛ, ПК) на воздухе (/) и в яидкости (2, 3) <a href="/info/750026">кристаллических эластомеров</a> (ПЭ, фторопласт-42) на воздухе (4), в <a href="/info/1564466">поверхностно-активной среде</a> (5, в) и в жидкостях, вызывающих набухание (7).
    Резкое снижение сопротивления растяжению и увеличение предельных деформаций пленок из стеклообразных полимеров связано с развитием в них под действием поверхностно-активных сред большого числа микротрещин. Содержание большого числа трещин в тонких пленках из стеклообразных полимеров коренным образом изменяет их деформационные и теплофизические свойства. Так, например, при сушке пленок из ПЭТФ, растянутых в пропаноле до деформации 100—150%, происходит почти полное восстановление исходных размеров. Деформационные кривые повторного растяжения ПЭТФ имеют два предела текучести. Образцы пленок из полиметилметакрилата (ПММА), высушенные в растянутом состоянии после деформации в спиртах, при незначительном нагревании почти полностью восстанавливают свои размеры в температурном интервале ниже температуры стеклования [78], а аналогично подготовленные образцы ПЭТФ при отжиге обнаруживают способность к самопроизвольному удлинению. [c.164]

    Из табл. 11 видно также, что, несмотря на высокие КМУ сетчатых полимеров, их упаковка способна еще улучшаться при отжиге (стремясь, по-видимому, к пределу — плотной упаковке эллиптических цилиндров с КМУ = = 0,91 [181]). Прямые измерения свободного объема сетчатых полимеров [182] показали, что он снижается при отжиге. Отжиг приводит к заметным структурным усовершенствованиям сетчатого полимера. На рис. 16 приведены кривые размораживания молекулярных движений в сетчатых полимерах, полученных методом ТСД [183]. Кривые а характерны для образцов,, которые после нагревания до 160° С быстро охлаждались до температуры жидкого азота (5 град мин). Кривые б отвечают образцам, которые были отож жены от 160 до 80° С со скоростью 0,3 град мин. Для отожженных образцов характерно улучшение вида спектра молекулярных движений отчетлива проявляются отдельные движения, пики становятся уже. Это прямо свиде тельствует о сужении функции распределения каждого вида движений по временам релаксации, т. е. об упорядоченности системы. Отжиг образцов приводит также к увеличению в среднем энергии межмолекулярпых водородных связей [184]. Таким образом, становится ясно, что медленный отжиг вызывает уплотнение стеклообразного полимера, повышение однородности его структуры при неизменности молекулярного и топологического уровней. [c.154]

    Если область II кривой а—е аморфного стеклообразного полимера обусловлена проявлением эластичности, имеющей релаксационную природу, то на ее величину и само существование должны оказывать сильное влияние температурный и временной факторы. Действительно, при понижении температуры величина предела вынужденной эластичности увеличивается, а область ее сокращается вплоть до полного исчезнования, когда разрушение образца наступает до достижения предела вынужденной эластичности (рис. 54). При понижении температуры тепловая энергия сегментов снижается и не может преодолеть силы межмолекулярного взаимодействия, что необходимо для развития высокоэластической деформации. Поэтому предел вынужденной эластичности возрастает. Температура, при которой разрывное напряжение (т, е. разрушение образца) совпадает с пределом вынужденной эластичности, называется температурой хрупкости ( 4 на рис. 54). Ниже этой температуры (4) вынужденноэластические деформации не развиваются, и полимер находится только в хрупком состоянии. Его разрушение происходит по механизму хрупкого разрыва (см. гл. VHI). [c.112]

    Если полимер содержит кристаллические структуры, сформировавшиеся в процессе его синтеза или хранения, то кривая нагрузка— удлинение такого кристаллического полимера существенно отличается от кривой рис. 60 и более напоминает кривую о — е для стеклообразных полимеров (см. рис. 53). Как и для стеклообразных полимеров, на кривой нагрузка — удлинение кристалличеоких полимеров можно выделить три характерные области (рис. 61). В области / деформация пропорциональна удлинению и происходит в основном за счет деформации аморфной части полимера. Структура материала таким образом не меняется. В точке перегиба (переход от области / к области //) в деформируемом образце возникает один или несколько утонченных участко1В — шейки, которые быстро растут. При этом происходит резкое уменьшение поперечного сечения перешедших в шейку участков образцов. К концу II области, как и в случае стеклообразных полимеров, весь рабочий участок образца переходит в шейку. Далее (область III) деформируется уже новый материал — шейка модуль его резко возрастает, удлинение падает и вскоре наступает разрыв образца (точка А). На стадии роста шейки происходит ориентация кристаллов в направлении растяжения, разрушение (плавление) тех кристаллических областей, которые оказались расположенными перпендикулярно направлению растяжения, и рост новых кристаллитов, ориентированных по направлению растяжения. В образце появляется анизотропия оптических и механических свойств. [c.123]


Смотреть страницы где упоминается термин Кривая для стеклообразных полимеров: [c.220]    [c.294]    [c.159]    [c.135]    [c.188]    [c.189]    [c.418]    [c.251]    [c.239]    [c.283]    [c.191]    [c.69]    [c.418]    [c.167]    [c.110]   
Структура и механические свойства полимеров Изд 2 (1972) -- [ c.136 , c.141 ]




ПОИСК







© 2024 chem21.info Реклама на сайте