Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ксенон удельный вес

    Извлечение высокоактивных примесей из пылегазовых и жидких отходов и последующий сброс в атмосферу или водоемы отходов с удельной радиоактивностью, не превышающей уровень, установленный соответствующими международными и национальными нормами. В частности, из газообразных отходов атомных электростанций перед их выбросом в атмосферу улавливают радионуклиды криптона и ксенона. [c.500]


    Наиболее широко в адсорбционных исследованиях используется аргон-, по сравнению с Кг и Хе он, по-видимому, более перспективен для определения удельной поверхности. Эти три газа проявляют значительные различия в ряде важных свойств (табл. 25). Потенциалы ионизации этих газов одинаково высоки вследствие большой устойчивости внешних электронных оболочек, поэтому они химически инертны и образуют одноатомные газы с низкой температурой кипения. Зато другие свойства этих инертных газов более сильно зависят от их атомных номеров, и, что особенно важно для адсорбции, самый легкий из них — аргон — имеет наиболее низкую поляризуемость. В результате представляется маловероятным, что другие газы проявляют заметное изменение теплоты адсорбции при переходе от одного твердого тела к другому и имеют резко выраженный локализованный характер адсорбции (который, как мы видели, по-видимому, проявляется в случае адсорбции криптона и ксенона на некоторых металлах). [c.108]

    Адсорбция аргона исследовалась как при —196, так и при —183°. Однако аргон менее удобен по сравнению с криптоном и ксеноном в том отношении, что давление его насыщенного пара настолько высоко, что он не может быть использован для измерений при очень низких значениях удельной поверхности. При —196° (твердый аргон) давление пара составляет 187 мм рт. ст., а при —183° (жидкий аргон) оно равно 1002 мм рт. ст. [c.108]

    Точность определения поглощения газа м зависит от того, насколько суммарное количество поглощенного газа отличается от количества оставшегося неадсорбированного газа и от количества, которое адсорбируется (при физической адсорбции) на стенках сосуда, имеющего ту же температуру, что и образец. Поэтому при прочих равных условиях точность снижается с уменьшением удельной поверхности образца. При физической адсорбции проблему, связанную с оставшимся в мертвом объеме газом, можно до некоторой степени устранить, если использовать адсорбат с более низким значением ро, который сильнее адсорбируется и снижает тем самым равновесное давление над образцом. Преимущества ксенона при 90 К и криптона при 77 К очевидны (ср. табл. 1). Поправку на адсорбцию охлаждаемыми стенками сосуда с образцом вводят по результатам холостого опыта. Величина этой поправки зависит ие только от соотношения поверхностей сосуда и образца, ио и от прочности связывания на них адсорбата. Например, теплота адсорбции ксенона или криптона (которые обычно используют для образцов с низкой удельной поверхностью) на переходных металлах больше, чем на стекле, так что при 77—90 К степень покрытия поверхности стекла при одинаковом равновесном давлении составляет только 10—15% степени покрытия поверхности чистого металла. Прочность связывания адсорбата иа окислах и на стекле значительно ближе. Минимальная поверхность, которую можно достаточно точно измерить, зависит от формы образца, так как последняя влияет иа величину мертвого объема. [c.340]


    Тепловые и термодинамические. Критическая температура ксенона соответствует 16,74 °С при давлении 5,6 МПа, тройная точка — температуре —111,63 °С и давлению 0,08 МПа, температура кипения (кип= ==—107,96 °С, температура плавления ( л=—111,65°С, характеристическая температура 0о = 65 К, удельная теплота плавления ДЯпл = = 17,5 кДж/кг, удельная теплота испарения в точке кипения ДЯисп= = 96,6 кДж/кг, удельная теплота сублимации при О К ДЯс бл = = 122,5 кДж/кг. [c.545]

    Разделение изотопов в разряде постоянного тока (эксперимент). История наблюдения эффекта. В упоминавшейся работе [1] в тлеющем разряде постоянного тока было обнаружено разделение изотопов водорода, а попытка зарегистрировать разделение изотопов ксенона оказалась неудачной. Причиной неудачи была скорее всего недостаточная чувствительность методики, применявшейся для диагностики изменения изотопного состава. Авторы определяли удельный вес по теплопроводности газа в пробах. Масс-спектрометрический метод анализа не применялся. Эффект разделения изотопов водорода был объяснён преобладанием в разряде молекулярных ионов дейтерия. Это качественное объяснение эффекта подтверждено расчётом в последующей подробной работе, посвящённой уже только изотопам водорода [16]. Вопрос о наличии в разрядах постоянного тока разделительного эффекта, непосредственно связанного с различием масс частиц, в течение длительного времени оставался невыясненным. [c.345]

    Необходимость в таких системах возникает в связи с увеличением удельной мощности и размеров реактора, поскольку при этом возрастает вероятность пространственных колебаний мощности, связанных с нестационарным отравлением ксеноном. Наконец, имеются значительные преимущества у жидкостных канальных систем аварийной защиты. Системы с таким регулированием и аварийной защитой реализованы в ряде реакторов. [c.213]

    На рис. 17.1.18 приведены графики, показывающие зависимость заряда пылевых частиц от радиуса при разных удельных мощностях ФИЭ при давлении ксенона, равном 10 Па. Видно, что линейная пропорциональность от радиуса пылевых частиц, предсказываемая аналитической теорией [37-39], не наблюдается. [c.288]

    Классическим (или стандартным) способом нахождения удельной поверхности является так называемый метод БЭТ (Брунауэра — Эммета — Теллера), в основе которого лежит определение емкости монослоя образца твердого тела по низкотемпературной адсорбции жидкого азота, криптона, ксенона или других газов. [c.10]

    Из хроматограмм были определены величины удельных удерживаемых объемов ксенона на кристаллах цеолита ЫаХ при малых заполнениях V . Из изотерм адсорбции, определенных статическим методом, так же, как и в работе [8], были определены константы равновесия адсорбат-адсорбент К мм рт. ст.)- [9] (константы Генри). Эти величины К, полученные при обработке статических изотерм адсорбции [8], были пересчитаны в значения Ущ мл г по формуле К кТ а . [c.63]

    На рис. 4 графически изображена зависимость логарифма удельного удерживаемого объема ксенона, деленного на температуру от обратной температуры хроматографической [c.63]

    Аналогичное постоянство концентрации наблюдается и атмосфере и для других устойчивых инертных газов. Это тем более примечательно, что эти газы разнятся по своим удельным весам в большей мере, чем какие-либо другие газы аргон в 10 раз, а ксенон в 33 раза тяжелее гелия. [c.81]

    Удельный вес жидкого аргона, неона, гелия, криптона и ксенона на линии насыщения. .........................................................445 [c.477]

    I подается в трубное пространство конденсатора ректификационной колонны 2, где сжижается и стекает по насадке в куб колонны. Хладоагентом в межтрубном пространстве конденсатора служит жидкий кислород, КИПЯШ.ИЙ под повышенным давлением. Жидкость в кубе колонны обогревается с помощью электрического подогревателя. Дистиллят отбирается из-под крышки конденсатора. Около 90% дистиллята представляет собой чистый Кг, который выводится из установки через барботер 4 и собирается в газгольдерах. Последняя фракция, богатая ксеноном, собирается в емкости 3 или направляется в адсорбер 6, заполненный активированным углем для очистки от примесей криптона путем фракционированной десорбции. Из адсорбера 6 фракция, богатая криптоном, отбирается в адсорбер 5, а чистый Хе направляется в баллоны 8. Состав Хе контролируется измерением его удельного веса с помощью газовых весов 7. [c.97]

    Для повыщения емкости подобных адсорбентов на адсорбент-носитель с большой удельной поверхностью (силохром) наносили хлориды никеля, кобальта и бария. Между этими хлоридами и поверхностными гидроксильными группами силохрома происходят химические реакции, что приводит к образованию качественно новой поверхности. В отличие от изотерм адсорбции ксенона на чистых солях изотермы адсорбции на модифицированных хлоридами сило-хромах имеют, как правило, один вертикальный скачок [69]. Это, по всей вероятности, свидетельствует о том, что в результате модифицирования на поверхности силохрома образовался однородный участок. Следует отметить, что этот участок образуется также при обработке силохрома хлоридом бария, т. е. хлоридом с неслоистой структурой. Поэтому можно предполагать, что при модифицировании силохрома хлоридами металлов однородные участки поверхности образованы ионами С1-. [c.51]


    Т1 и Та — удельные веса чистых компонентов" смеси (неона и гелия или криптона и ксенона и т. д.)  [c.142]

    Структура. Обзор структурных характеристик пористого фильтра был сделан в гл. 3.1.2. Пористость 6, удельная поверхность Л о и гидравлический радиус пор а=26/5о могут быть измерены методами адсорбции по Брунауэру, Эммету и Теллеру [3.131] с применением азота илн ксенона. Распределение пор по радиусам может быть найдено некоторыми дополнительными методами с помощью изотермы адсорбции Баррета — Джойнера — Халенды для конденсируемого газа [3.216], с помощью продавливания ртути, когда измеряются силы поверхностного натяжения, препятствующие проникновению в поры жидкой ртути [3.215, 3.217], и с помощью измерения потоков [3.218]. Структуру пор и распределение их по радиусам можно также анализировать на поверхностях фильтров или срезах (изломах или микроразрезах) с помощью сканирующего или обычного микроскопа и дифракции рентгеновского излучения при малых углах падения соответствующие изображения или дифференциальные картины дают информацию о структурном коэффициенте (3.35), о распределении сужений пор и о наличии слепых пор. Эта информация имеет существенное значение для сравнения реальных пористых фильтров с теоретическими моделями (см. разд. 3.1.2), а также для предсказания эффектов поверхностной диффузии (см. разд. 3.1.7). [c.127]

    Адсорбционные и разделительные свойства низко-обгарных адсорбентов оценивают по величине удельных удерживаемых объемов низкокипящих газов и по смесям воздух—СОг и воздух— Хе при 25 и 15 °С (табл. 10.20). Все образцы по удерживающей способности аргона, кислорода и оксида углерода значительно превосходят промышленный уголь АГ-2. Малообгар-ные образцы не проявляют четко выраженных молекулярно-ситовых свойств по кислороду и аргону, имеющих различный размер молекул и близвсую поляризуемость вследствие одинаковой доступности микропор для этих газов. Однако все образцы показывают высокую сорбционную емкость по диоксиду углерода и ксенону при 25 и даже 150 °С. При этом образец КС по поглощению диоксида углерода при 25 °С значительно превосходит толь АГ-2. [c.592]

    Изотермы адсорбции криптона на образце Ni lj, как в области преимущественно мономолекулярной, так и в области преимущественно полимолекулярной адсорбции, изображены на рис. 11,22 и 11,23 [301]. Эти изотермы начинаются участками, обращенными выпуклостью к оси давления газа, и при дальнейшем росте заполнения проходят ярко выраженные ступени. Однако в этих работах не указана масса и удельная поверхность образца, поэтому нельзя точно сказать, чему соответствует вторая ступень изотермы адсорбции (рис. 11,23). Эта ступень наблюдается при довольно большой величине р/ро = 0,4—0,5 и может поэтому соответствовать как заполнению преимущественно мономолекулярного слоя на поверхности грани с малой энергией адсорбции, так и заполнению преимущественно второго слоя на поверхности грани с большой энергией адсорбции. Изотермы адсорбции аргона и ксенона на образце Gd la имеют подобный вид. Аналогичные результаты были получены ван-Донгеном [278]. [c.65]

    Для определения удельной поверхности удобно также использовать ксенон, так как он имеет низкое давление насыщенного пара при температурах адсорбции (обычно —196°). И в этом случае величина Ат, обычно определяемая путем калибровки по криптону, зависит от природы твердого тела. В табл. 24 представлены результаты такого сравнения, которое проведено различными авторами, использовавшими разнообразные адсорбенты (в большинстве случаев металлы). По-видимому, значения Ат должны находиться в пределах от 18 до 27 и, согласно данным работ [91, 92] зависеть от параметра решетки адсорбентов. Все эти значения больше 16,5 А — значения, рассчитанного для плотноупакованной твердой фазы (температура плавления Хе —112°) по уравнению (2.64) при р, равном плотности твердого тела. Недавно Шенебо и Шюренкемпер [143] измеряли удельные поверхности порядка нескольких квадратных сантиметров, используя в качестве адсорбата смесь естественного ксенона и Хе. Взяв Ат=2Ъ А они получили значение, согласующееся в пределах нескольких процентов с геометрической площадью образца стекла. [c.107]

    При этом ядерные энергодвигательные установки могут быть созданы на основе сочетания разработанных технологий ядерных термоэмиссионных установок типа ТОПАЗ со встроенными в активную зону электрогенерирующими каналами, либо с вынесенными из активной зоны термоэмиссионными преобразователями, либо с комбинированными схемами преобразования и технологии наиболее эффективных электрореактивных двигателей типа стационарных плазменных двигателей на ксеноне с удельным импульсом 1800 с или ионных двигателей. Этот вариант ЭДУ является наиболее подготовленным к реализации и обеспечивает вывод на высокоэнергетические орбиты (ГСО, межпланетные орбиты) наибольшей массы полезных нагрузок. Недостатком схемы является длительное (до 0,5 года) время вывода полезной нагрузки на ГСО даже при условии форсирования ( а 2,5 раза) энергоустановки по электрической мощности. [c.306]

    По-вндимому, наибольшую радиоактивность из всех газообразных отходов имеют отходящие газы заводов по переработке ядерного горючего. При растворении твэлов выделяются образовавшиеся при делении криптон и ксенон. В некоторых условиях могут улетучиваться и другие вещества, например иод в виде свободного элемента и рутений в виде летучей четырехокиси рутения Ри04. Обычно выбираются такие условия ведения процесса, чтобы свести к минимуму улетучивание рутения. Иногда сделать это очень трудно, особенно при тех концентрациях, в которых рутений присутствует в высокоактивных жидких отходах. Рутений может улавливаться фильтрами или химическими газоочистителями. При достаточно высоком уровне активности иод, встречающийся в виде (71/2 = 8,05 суток), улавливается из отходящих газов насадкой, содержащей серебро (обычно в колонках с насадкой, покрытой нитратом серебра). Окончательное удаление отработанного иода из поглотителей не представляет серьезной проблемы вследствие его короткого периода полураспада. Основным источником активности газов в охлажденном в течение нескольких недель реакторном горючем является (71/2=5,27 суток). Обычно длительность охлаждения отработанного горючего выбирается таким образом, чтобы уровень активности ксенона в отходах был достаточно низким и не мешал безопасной разгрузке. В связи с малым выходом (0,33%) и низкой удельной активностью Кг (71/2=10,6 лет) его -можно сбрасывать прямо в атмосферу. [c.321]

    Серьезная проблема удаления газообразных отходов возникает в связи с работой атомных реакторов на жидком горючем. В процессе работы из раствора горючего непрерывно выделяются газообразные продукты деления. К ним относятся изотопы с очень коротким периодом полураспада (и, следовательно, имеющие высокую удельную активность), которые распадаются в твэлах задолго до их переработки. Наиболее удачной иллюстрацией этой проблемы может служить работа опытного гомогенного реактора (НЕТ, или НРЕ-2) в Ок-Ридже. В состав газов, выделяющихся из реакторного горючего, входят пар, дейтерий и кислород как продукты радиолиза воды, а также газообразные и летучие продукты деления. Эта смесь проходит последовательно через ловушку для иода, рекомбинатор воды, конденсатор и ряд колонок, занолненных древесным углем. Ловушка для иода, представляющая собой слой проволочной сетки, покрытой серебром, не является абсолютно необходимой для очистки отходящих газов, поскольку иод эффективно сорбируется древесным углем. Важной функцией ее является защита катализатора в рекомбинаторе от отравления иодом. В рекомбинаторе продукты радиолиза превращаются в водяной пар, а небольшой поток кислорода увлекает криптон и ксенон в колонки с древесным углем, в которых не происходит улавливания газов, но их прохол< дение замедляется до такой степени, что короткоживущие изотопы распадаются еще до того, как смогут выйти наружу. Единственным радиоактивным элементом, достигающим выпускной трубы, является Кг . [c.322]

    Все соединения ксенона были приготовлены по методике, описанной в настоящей книге (см. стр. 53). Фтористый водород был получен путем двойной перегонки продажного НР, имеющего при 0°С удельную проводимость менее 10 oм- м- [2]. Для определения растворимости приготовляли по весу растворы соответствующих концентраций и наблюдали, при какой температуре исчезает последний сталл. При повторных замо- раживаниях и оттаиваниях 7 одного и того же образца > кристаллиза-оставалась [c.367]

    Для высокопористых материалов с относительно большой удельной поверхностью в качестве адсорбата применяют азот при температуре его кипения диапазон измеряемых давлений составляет 10 —10 Па. По выражению Грега и Синга [2], азот в качестве адсорбата имеет тенденцию всегда давать изотермы типа П. При низких 5уд использование азота становится бессмысленным, так как давление этого газа при температуре кипения равно 1 МПа и его количество, остающееся в измерительной части установки, слишком велико. В этом случае величина адсорбции представляет собой малую разность больших величин [53, с. 199]. Поэтому для измерения 5уд<1 м /г в качестве адсорбатов используют газы и пары, имеющие при температуре жидкого азота низкие зачения р. Для этих целей подходят криптон и ксенон [6], для которых /З8=133 Па при Г—198 и—169°С соответственно, причем преимущество ксенона заключается в том, что он имеет более высокую теплоту адсорбции. При использовании указанных газов измерения проводят в области более низких давлений, сводя к минимуму мертвые объемы установки, так как адсорбцию можно и не обнаружить. [c.36]

Рис. 4. Зависимость логарифмов удельных удерживаемых объемов ксенона цеолитом НаХ, деленных на температуру определенных статическим (1) и газо-хроматографичежим (2) методами, от обратной температуры Рис. 4. <a href="/info/301103">Зависимость логарифмов</a> удельных удерживаемых объемов ксенона цеолитом НаХ, деленных на <a href="/info/14234">температуру определенных</a> статическим (1) и газо-хроматографичежим (2) методами, от обратной температуры
    Рассмотрим, как эти требования выполняются в различных хроматографических методах. В настоящее время общепризнанным является мнение, что наиболее подходящими для измерения поверхности твердых тел являются благородные газы аргон, криптон и ксенон. Азрт близок по своим свойствам к благородным газам, хотя и несколько уступает им. Для определения поверхности на статических установках измеряют обычно низкотемпературную адсорбцию всех этих газов. Однако в случае использования хроматографических методов при низких температурах значительно увеличивается вклад и значение диффузионных явлений, что сильно снижает точность тех методов, которые требуют соблюдения условий равновесной хроматографии, особенно в случаях тонкопористых адсорбентов. В табл. IV- приведены результаты применения всех четырех рассмотренных методов для определения удельной поверхности по аргону при —196° С четырех образцов катализаторов разной природы, размеры пор которых различаются почти на два порядка [c.204]


Смотреть страницы где упоминается термин Ксенон удельный вес: [c.176]    [c.33]    [c.295]    [c.296]    [c.341]    [c.357]    [c.338]    [c.107]    [c.114]    [c.338]   
Справочник по разделению газовых смесей (1953) -- [ c.36 ]




ПОИСК





Смотрите так же термины и статьи:

Ксенон

Ксенон ксенон

Ксенон удельный вес жидкости



© 2025 chem21.info Реклама на сайте