Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азосоединения окисление

    К реакциям различных классов в жидкой фазе, которые сопровождаются слабой хемилюминесценцией в видимой области, относятся термический распад перекисей, гидроперекисей, азосоединений окисление кислородом углеводородов и других соединений конденсация хлорангидридов кислот с аминами, поликонденсация (например, реакция получения найлона) окислительная деструкция полипропилена электролиз этанола, уксусной кислоты, солей органических кислот, нитрометана и т. п. Выход хемилюминесценции в этих реакциях порядка 10 — 10 . [c.121]


    Наиболее важные реакции солей диазония связаны с диазогруппой. При определенных условиях группу диазония можно заменить самыми различными группами, например —Вг, —С1, —J, — N, — NS, — NO, —NO2, арилом и др. Подобного рода реакции широко применяются для получения замещенных ароматических углеводородов. Кроме того, большое значение имеют также другие реакции солей диазония при их восстановлении образуются арилгидразины, при взаимодействии с аминами и фенолами образуются замещенные азосоединения, окисление их ведет к получению нитраминов. [c.435]

    Получение азосоединений. Окисление алифатических гидразинов приводит к азопроизводным, которые являются очень интересными реагентами. [c.415]

    Синергизм в инициированном окислении. Если цепную реакцию окисления инициирует инертное по отношению к ингибитору соединение, например, азосоединение, то перечисленные выше механизмы, создающие синергизм в автоокислении, в этом [c.129]

    Влияние инициаторов. Имеется большая группа химических реакций —окисление молекулярным кислородом, хлорирование и бромирование органических соединений, реакции полимеризации и др., которые начинаются при наличии инициаторов реакции и протекают по цепному радикальному механизму. Такие реакции называют цепными реакциями. Инициатором реакции обычно являются радикальные частицы. В качестве примера может быть приведена реакция взаимодействия газообразного хлора с водородом. В темноте эта реакция идет с малыми скоростями. При освещении или введении инициатора, например паров натрия, реакция идет со взрывом. Некоторые перекисные и азосоединения легко распадаются на радикалы и инициируют реакции полимеризации. [c.530]

    Особенность этих соединений заключается в том, что в про-.цессе окисления углеводородов они долгое время не расходуются. Как показали кинетические исследования, это происходит потому, что азосоединения не участвуют в начальных стадиях окисления — в реакциях инициирования и продолжения цепей, но обрывают цепи, действуя как катализаторы рекомбинации активных пероксидных радикалов. [c.62]

    Б неорганическом фотометрическом анализе наиболее часто используют реакции комплексообразования ионов определяемых элементов с неорганическими и особенно с органическими реагентами, реже реакции окисления-восстановления, синтеза и других типов. В органическом фотометрическом анализе чаще применяют реакции синтеза окрашенных соединений, которыми могут быть азосоединения, полиметиновые и хинониминовые красители, ациформы нитросоединений и др. Иногда используют собственную окраску веществ. [c.53]


    Как следует из самого названия, азоксисоединения образуются при окислении азосоединении, например перекисью водорода  [c.614]

    Процессы окисления углеводородов относятся к классу свободнорадикальных реакций. Одним из основных признаков, указывающих на цепной характер процессов окисления, является ускоряющее действие веществ, способных в условиях окисления распадаться с образованием свободных радикалов (перекиси, гидроперекиси, азосоединения и т. д.). Окислительные реакции инициируются также соединениями металлов М переменной валентности в этом случае чаще всего реализуется одноэлектронный механизм (схема Габера—Вейсса) с образованием свободных радикалов  [c.190]

    При проведении окисления в щелочной среде промежуточные продукты окисления вступают-во взаимодействие друг с другом, образуя азокси- и азосоединения  [c.332]

    При окислении азосоединений образуются азоксисоединения- [c.42]

    Важнейший метод синтеза алифатических азосоединений состоит в окислении соответствующих гидразинов  [c.43]

    Восстановительное расщепление азосоединений Хиноны окислением 1,2- или 1,4-аминофенолов [c.596]

    Окисление 1,2-дизамещенных гидразинов. 1,2-Дизамещенные гидразины при окислении оксидом ртути (П), гипобромитом натрия, или кислородом воздуха превращаются в азосоединения. При реакции с кислородом образуется пероксид водорода, который получают таким путем в технике. Азосоединения затем снова восстанавливают в циклическом процессе в гидразины. [c.518]

    Ряд исследователей [588] проверили возможность применения как окислителя системы избыток твердого КОг/каталитиче-ские количества 18-крауна-6/бензол на примере гидразинов, гидразонов и родственных соединений. В большинстве случаев реакцию ведут при перемешивании в течение 24 ч. Монозамещенные гидразины, особенно арилгидразины, превращались в продукты, не содержащие азот (часто в углеводороды), вероятнее всего, в результате свободнорадикального процесса. 1,2-Ди-арилгидразины дают соответствующие азосоединения окисление 1,1-дизамещенных гидразинов приводит к N-нитpoзo oeди-нениям. Гидразоны ароматических кетонов образуют азины. [c.395]

    Принцип метода заключается в том, что в реакционную смесь вводят быстро реагирующий с радикалами акцептор и следят за его расходованием, что позволяет измерить скорость генерирования радикалов в системе. Для акцептирования радикалов типа НО- и НОг используют ингибиторы окисления — фенолы, нафтолы, ароматические амины. За расходованием ингибитора наблюдают, как правило, спектрофотометрически. Для работы в видимой части спектра продукты окисления ингибитора должны быть окрашены. Один из методов анализа основан на переводе амина (фенола) в азосоединения, которые в щелочной среде интенсивно окрашены и легко фотометрируют-ся [32]. [c.67]

    Такие азоксисоелмиения жирного ряда могут быть ио.тучены и синтетически иутем окисления алифатических азосоединений надбензойной кислотой. [c.616]

    Химическая поляризация ядер наблюдается в продуктах термического и фотохимического распада перекисей и азосоединений, в продуктах реакций изомеризации и перегруппировки, при фотолизе карбонильных соединений, в продуктах реакций металлоргани-ческих соединений, в реакциях окисления, переноса электрона и т. д. [c.297]

    Бром можно заметить по его желтой окраске. Однако лучше применять специальные необратимые индикаторы, например азосоедине-ния (метиловый оранжевый или метиловый красный). В точке эквивалентности вследствие разрушения бромом этих азосоединений наблюдается обесцвечивание раствора. Окисление этих индикаторов необратимо. [c.415]

    Хемилюминесцентный метод изучения кинетики химических реакций ранее довольно широко применялся в газовой фазе. В жидкой фазе он был использован для изучения яркосветящихся реакций окисления люминола и люцигени-на. Этот метод был развит в последнее десятилетие в Институте химической физики АН СССР для изучения реакций со слабой хемилюминесценцией — распада перекисей, гидроперекисей, азосоединений в растворах, инициированного гидроперекисями окисления углеводородов, ингибированного окисления органических соединений и др. [c.84]

    Замещение галоида водородом при помощи омедненного цинка и восстановление амальгамой цинка будут. рассмотрены ниже. Большое значение имеет восстановление нитросоединений цинком , в щелочном растворе, так как при этом невозможны никакие побочные акции. Практически этот способ применяют прежде всего для получения гидразосоединений, из которых путем окисления можно получить азосоединения легче, чем методом непосредственного восстановления нитросоединений. Реакцию ведут при температуре кипения. Нитросоединения растворяют в растворе едких щелочей, иногда с добавлением некоторого количества спирта. К раствору при энергичном перемешивании дббавляют цинковую пыль с такой скоростью, чтобы кипение не было слишком бурным. Количество употребляемого цинка устанавливают в зависимости от природы восстанавливаемого продукта. В среднем применяют 30%-ный избыток цинка по отношению к теоретически необходимому. Выход и продолжительность реакции в большой степени зависят от чистоты цинковой пыли. Перед восстановлением цинковую пыль анализируют следующим образом. К 0,2 г цинковой пыли добавляют 125 мл 0,1 н. раствора бнхро-мата калия я Ь мл 20%-ной серной кислоты. Смесь встряхивают.до полного растворения цинка и разбавляют водой до 500 мл. К 100 мл этого раствора добавляют 2 г иодистого калия и 20 мл 20%-ной серной кислоты оставляют на 0,5 часа и титруют 0,1 н. раствором тиосульфата натрия. Цинковую пыль с содержанием менее 75% чистого цинка нельзя применять для восстановления во многих случаях требуется еще более чистый цинк. Эти реакции очень легко контролировать в связи с тем, что промежуточно образующиеся азосоединения окрашены при обесцвечивании раствора реакцию следует прервать, чтобы избежать дальнейшего восстановления до амина. К реакционной смеси добавляют спирт для растворения частично выделившегося гидразосоединения и фильтруют горячим для отделения от избытка цинковой пыли, добавляя к фильтрату. 32--774 [c.497]


    Небольшая книга известных американских авторов имеет целью в какой-то мере восполнить существующий в литературе пробел и отразить быстрое развитие некоторых аспектов химии гидразо-, азо- и диазосоединений, Весьма ограниченный объем книги, естественно, не позволяет претендовать на достаточную полноту, и основное внимание уделяется новым и необычным реакциям. Выбор тем для более подробного изложения носит довольно субъективный характер, и, как отмечают сами авторы, многие важные вопросы не затрагиваются или лишь бегло упоминаются. Однако поскольку собственные работы и интересы авторов относятся к таким актуальным проблемам, как окисление гидразинов, гомоли-тический распад азосоединений и роль нитренов в механизмах реакций азотистых соединений, субъективизм изложения не становится существенным недостатком книги. Перевод дополнен изложением наиболее важных и интересных работ 1966—1968 гг. и многими ссылками на новейшую литературу. [c.7]

    Азосоединения могут быть получены окислением ароматических гидразинов, конденсацией их же с хинонамн, разложением солей диазония нли перегруппировкой триазенов (перегруппировка типа Фишера—Геппа). Азоксисоединения претерпевают перегруппировку Валлаха с образованием окси-азосоединений. Интересным, хотя практически и невыгодным является диспропорционирование гидразосоединений. Было показано, что гидр азобензол пиролизуется на анилин и азобензол без разрыва связи N—N в получающемся азобензоле, т. е, гидр азобензол окисляется в азосоединение. [c.42]

    Метод, основанный на использовании азосоединений, положил начало так называемым неэлектрохимическим методам производства перекиси водорода, однако до сих пор не получил широкого промышленного применеяия. Еще в 1932 г. Уолтон и Филсон показали, что гидразобензол в спиртовом или бензольном растворе может быть окислен воздухом или кислородом с образованием перекиси водорода и азобензола. Аналогичные результаты были получены и для других арилгидра-зосоединений. [c.183]

    X. п. я. обнаружена при окислении, полимеризации, цепном галогеиировании, распаде перекисей и азосоединений, термич. перегруппировках и изомеризации, фотохим. р-циях, раЛ1И4альных р-циях с участием орг. соед. Hg, Мв, 3 , РЬ и др. Это явление позволяет исследовать кинетику и мехаиизм р-ций разделять радикальный и нерадикальный пути р-ции, идентифицировать радикальные стадии, оценивать время жизни радикалов и константы скоростей отд. стадий сложных р-ций, исследовать нестабильные промежут. продукты и т. п. [c.644]

    При окислении гидразинов могут происходить и pa.i-личныс вторичные реакции. Может иметь место образование углеводородов ряда бифенила часто образувотсн следы азоСоединений, небольшое количество- фенолов и немного смолы [116]. [c.311]

    А. получают окислением азосоединений в мягких условиях, напр, под действием H202 RN=NR -Ь [О] [c.54]

    Различают И. обратимые и необратимые. Изминеяве окраски первых при изменении состояния системы (напр., фенолфталеина при изменении pH среды) м.б. повторено многократно. Необратимые И. подвергаются необратимым хим. превращениям, напр, азосоединения при окислении ионами BrOJ разрушаются. Индикаторы, к-рые вводят в исследуемый р-р, наз. внутренними, в отличие от внешних, р-цию с к-рыми проводят вне анализируемой смеси. В последнем случае одну или неск. капель анализируемого р-ра помещают на бумажку, пропитанную И., или смешивают их на белой фарфоровой пластинке с каплей индикатора. [c.227]

    Особые азосоединения глубоко-синего цвета, тахше, как RsSiN=NPh (R=Pr), можно получить, например, окислением RsSiNLiNLiPh бромом при низких температурах [193]. [c.185]

    Окисление в мягких условиях, например перекисью водорода, превра-ш,ает азосоединения в азоксисоединеиия. [c.745]

    Окисление. И. д. окисляет первичные ароматические амины в бензольном растворе при комнагиойтемпературе в азосоединения (1—2 дня), однако с различными выходами толуидины—42, 56 п 6% /2-нитроанилин — 53%, о -нафтиламии — 3% [6]. Изучено [c.58]


Смотреть страницы где упоминается термин Азосоединения окисление: [c.589]    [c.518]    [c.421]    [c.1009]    [c.406]    [c.546]    [c.182]    [c.1692]    [c.299]    [c.299]    [c.9]    [c.651]    [c.680]    [c.519]    [c.239]   
Микро и полимикро методы органической химии (1960) -- [ c.227 ]




ПОИСК





Смотрите так же термины и статьи:

Азосоединения



© 2025 chem21.info Реклама на сайте