Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции сложные инициаторы

    Как правило, при гомогенных реакциях полимеризации, инициируемых перекисями, азосоединениями или другим подобными инициаторами, скорость реакции пропорциональна корню квадратному из концентрации инициатора или в фотоинициируемых процессах корню квадратному интенсивности света, что подтверждает представление о бимолекулярном характере процесса обрыва цепи. С другой стороны, порядок реакции при расчете на концентрацию мономера иногда несколько выше единицы (например, 1,5). Это указывает на то, что в действительности процесс сложнее и может включать более сложный процесс инициирования [92,130]. [c.118]


    Свободные радикалы, возникающие в окислительно-восстановительных системах и при термическом распаде инициаторов, способны вызывать сложную цепную реакцию полимеризации, в результате которой образуется полимер с высокой молекулярной массой [13—17]. [c.140]

    Половинный порядок реакции по инициатору, являющийся следствием бимолекулярного обрыва растущих цепей, представляет собой наиболее общую закономерность процесса радикальной полимеризации. Поэтому в сложных случаях, когда механизм полимеризации вызывает сомнение, выяснение порядка реакции по возбудителю часто оказывается ценным для установления природы процесса. Напротив, порядок по мономеру нередко отклоняется от первого, причины чего далеко не всегда ясны. [c.203]

    В нескольких работах по фотоинициированной полимеризации метилметакрилата было установлено, что порядок реакции по инициатору (в данном случае по интенсивности облучения или концентрации сенсибилизатора) сложным образом меняется при увеличении конверсии. При 25%-ной конверсии порядок падает до 0,25, [c.91]

    Число двойных связей в полиэфире соответствует числу молекул непредельной кислоты, участвующих в образовании полиэфира. Обычно вместо малеиновой кислоты берут малеиновый ангидрид. В состав ненасыщенных эфиров для повышения эластичности вводят насыщенные кислоты. Благодаря двойным связям полиэфиры такого состава в присутствии инициаторов вступают в реакцию сополимеризации с непредельными мономерными соединениями или с более сложными соединениями, содержащими двойные связи образуются пространственные полимеры. Пользуясь такой реакцией, можно жидкие исходные составляющие превратить в твердые вещества без выделения летучих продуктов. Это происходит потому, что в процессе реакции не образуются побочные низкомолекулярные продукты и смеси не содержат летучих растворителей. Весьма выгодно использовать такие смеси в качестве заливочных компаундов и пропиточных составов. [c.231]

    Явление сополимеризации несравненно сложнее, чем простая полимеризация. При смешении двух способных к полимеризации компонентов в присутствии какого-либо инициатора (катализатора), как уже было указано, в результате цепной реакции образуются и полимеры и сополимеры. Выяснение кинетики и механизма этих процессов является, в большинстве случаев, очень сложной задачей. При бинарной сополимеризации вместо одной реакции роста цепи имеются, по меньшей мере, четыре вместо двух возможных реакций обрыва цепи (диспропорционирование) обнаруживаются, по меньшей мере, семь различных обрывов и т. д.  [c.631]


    Из перекисных и гидроперекисных инициаторов наиболее тщательно изучены перекись бензоила и ее производные. Радикальный распад перекиси бензоила протекает по сложной цепной реакции, в результате которой образуются бензоатный радикал- [c.100]

    Цепная полимеризация. Механизмы радикальной и ионной поли меризации. Инициаторы и регуляторы. Причины образования развет вленных и пространственных полимеров. Стереорегулярные полимеры Применение катализаторов Циглера—Натта. Сополимеризация. Блок сополимеры и привитые сополимеры. Поликонденсация. Фенолальде-гидные и мочевиноальдегидные полимеры. Сложные полиэфиры. Поли меры на основе фурфурола. Мономер ФА. Эпоксидные и кремнийорга нические полимеры. Тиоколы. Полиуретаны. Полиамиды. Альтины Синтетические и натуральные каучуки. Полистирол и полиакрилаты Особые свойства высокомолекулярных соединений. Химические реак ции высокомолекулярных соединений полимераналогичные превращения и макромолекулярные реакции. Вулканизация. Деструкция полимеров. Ингибиторы деструкции. [c.108]

    Аналогично азоту может быть осуществлено замораживание атомов других газов, а также более сложных свободных радикалов (например, ОН). Исходную смесь частиц обычно разбавляют аргоном или каким-либо другим, не взаимодействующим с данными активными частицами веществом, которое создает при замораживании скелетную сетку (м а т р и ц у), изолирующую такие частицы друг от друга. Для получения- свободных радикалов (особенно — органических) чаще пользуются действием проникающих излучений на уже замороженное и сильно охлажденное исходное вещество. Так как при рекомбинации некоторых свободных радикалов выделяется много энергии, проблема их получения и хранения представляет значительный интерес не только для химии (где они могут быть использованы как инициаторы реакций или участники процессов необычного типа), но и для реактивной техники. [c.388]

    В реакциях окисления мы встречаемся с еще одним обстоятельством. Реакция НН + О КООН, в Которой участвует молекула кислорода в триплетном состоянии, не может протекать из-за нарушения закона сохранения спина (спин исходной системы равен 1, спин продукта равен 0). Цепной радикальный механизм позволяет преодолеть это препятствие. Применение внешних источников инициирования (свет, электроны, инициаторы, активная поверхность) ускоряет цепной процесс. Таким образом, возникновение активных промежуточных частиц и их многократное участие в отдельных стадиях сложного процесса и является преимуществом цепного процесса, объясняющим широкую распространенность цепных реакций. Чаще всего цепная реакция — экзотермический процесс. В отличие от одностадийных экзотермических реакций в цепном процессе часть энергии исходных веществ переходит в энергию промежуточных частиц, обеспечивающую им высокую активность. Чаще всего это химическая энергия валентноненасыщенных частиц — свободных радикалов, атомов, активных молекулярных продуктов со слабыми связями. Реже это колебательновозбужденные состояния молекул, в которых молекулы вступают в реакции. И в том, и в другом случае имеет место экономное использование энергии суммарного процесса для ускорения превращения исходных частиц в продукты. Размножение активных частиц в разветвленных и вырожденно-разветвленных реакциях является уникальным способом самообеспечения системы активными промежуточными частицами. Разветвление цепей позволяет преодолеть высокую эн-дотермичность актов зарождения цепей и во многих случаях отказаться от внешних источников инициирования. [c.219]

    В качестве примера интересно отметить, что общий механизм даже модельной термической реакции взаимодействия водорода с кислородом оказался весьма сложным, так как связан с образованием и исчезновением частиц -Н,-0,-ОН, HOj и в разнообразных последовательных и параллельных реакциях. Доля каждой из этих реакций з общем процессе определяется температурой, давлением, соотношением количеств водорода и кислорода, конфигурацией реактора и физико-химической природой его материала и т. д. До сих пор способ инициирования термической реакции взаимодействия кислорода с водородом продолжает оставаться предметом обсуждения. Существуют мнения, что инициатором является атомарный водород , образовавшийся в небольших количествах при столкновении молекул, а также, что инициирование обусловлено разложением перекиси водорода . [c.268]

    Таким образом, реакция углеводородов и их производных с треххлористым фосфором и кислородом или в присутствии инициаторов протекает по гомолитическому механизму и сопровождается образованием, как правило, сложной смеси продуктов. Реакция не идет [c.105]


    В большинстве случаев фотохимическая деструкция сопровождается процессами гидролиза и окисления за счет влаги и кислорода воздуха, активированными солнечной энергией, что придает реакции весьма сложный характер. При этом интенсивность и глубина протекающих процессов зависят от длины световой волны, интенсивности облучения, наличия ингибиторов или инициаторов, а также от природы полимера. [c.637]

    Возможно также инициирование теломеризации за счет фотолиза, радиолиза или термолиза реагирующих веществ без добавок каких-либо инициаторов, В этих случаях продукт реакции не загрязнен фрагментами распада инициаторов. Однако проведение фотолиза и радиолиза сложно в аппаратурном отношении. [c.86]

    Инициаторы полимеризации. Инициирование цепей является одним из наиболее сложных вопросов в свободно-радикальной полимеризации, поскольку практически все известные способы получения свободных радикалов тем или иным путем могут быть использованы для этой цели. Это чрезвычайно важно, так как успех любой реакции полимеризации зависит от постоянной и подходящей скорости получения активных центров. Некоторые мономеры, особенно стирол (и, по-видимому, стиролы с замещениями в кольце), подвергаются некатализируемо11 реакции полимеризации при нагревании без добавления инициаторов. Эта термическая реакция была исчерпывающе изучена [22]. Однако точно природа реального процесса инициирования все еще не известна. С энергетической и кинетической точек зрения процесс является, по крайней мере, бимолекулярным [46] большинство исследователей постулирует образование из мономера в результате бимолекулярной реакции дирадикала молекулы мономера соединяются по принципу хвост к хвосту , как указано ниже, [c.133]

    Большой научный интерес представляют исследования инициированного крекинга, то есть термического распада алканов при температурах, когда сам по себе распад не происходит (практически скорость распада равна нулю) но его вызывают небольшие примеси инициаторов—соединейия, легко распадающиеся на радикалы при низких температурах. Эта форма крекинга возможна лишь в той мере, в кйкой распад имеет радикально-цепной характер. При пониженных температурах крекинг не происходит вследствие очень малой скорости реакции первичного распада алкана на радикалы. Вместе с тем понижение температуры более благоприятно для развития цепей. Поскольку остановка процесса при низких температурах связана с практически ничтожной скоростью реакции зарождения радикалов, то, вводя в зону крекинга небольшие количества соединений, легко распадающихся на радикалы, необходимые для развития термического распада, мы можем повысить до нужных значений концентрацию радикалов и ускорить крекинг принципиально до значений скорости, соответствующих обычным температурам крекинга. Однако понижение температуры всегда приводит к понижению скорости элементарных реакций, которые происходят с заметной скоростью лишь при высоких температурах. Это в первую очередь относится к тем реакциям развития цепей при крекинге, которые связаны с распадом тех или иных сложных радикалов. Скорость распада таких радикалов уменьшается с понижением температуры и, естественно, по- нижается и скорость цепного крекинга в целом. Таким образом, индуцирование термического крекинга алканов при помощи инициаторов в условиях, при которых aw по себе распад не происходит, непосредственно доказывает радикально-цепной механизм крекинга, поскольку не представляется возможным рассматривать индуцированный крекинг как одну из форм молекулярного (или гетерогенно-гомогенного) катализа. [c.62]

    Значительно более сложным является вопрос о распределения по молекулярным весам. Ниже этот вопрос будет рассмотрен для начальной стадии полимеризации, когда скорость инициированил н концентрацию мономера, а следовательно, и стационарную концентрацию свободных радикалов можно считать постоянными величинами. Для просто-1 ы рассматривается случай, когда реакцией передачи цепи можно пренебречь. При рассмотрении предполагается, что константа скорости присоединения мономера ко всем свободным радикалам, в том числе и непосредственно образовавшимся из инициатора, одинакова и равна Константы скорости рекомбинации будут предполагаться равными кз для случая рекомбинации любых одинаковых свободных радикалов. Для рекомбинации разных свободных радикалов константа скорости рекомбинации в этом случае [c.363]

    Как мы уже отмечали, макрорадикальный характер твердых тел атомного строения предопределяет их высокую химическую активность, которая проявляется в виде хемосорбции. Но хемосорбция часто является только первым актом дальнейших сложных процессов. К таким процессам относятся, например, процессы молекулярного наслаивания, позволяющие осуществлять направленный синтез атомных твердых веществ с гарантированной воспроизводимостью. Но еще задолго до использования этих процессов внимание исследователей и производственников привлекали процессы гетерогенного катализа, относительно которых известно, что они также начинаются с актов хемосорбции, по крайней мере одного из катализируемых веществ. В определенных случаях твердое тело играет только роль инициатора (или, нередко, ингибитора) реакции, которая при этом развивается по законам цепных реакций, открытым Н. Н. Семеновым. Зная, что твердое тело является макрорадикалом, нетрудно себе представить, что соударение с ним молекул должно непрерывно генерировать радикалы — осколки этих молекул, обладающие неспаренными электронами, если свободные валентности твердого тела возрождаются. То же условие самовозобновления макрорадикала, а в более общем случае самовоспроизведение определенного набора функциональных [c.244]

    Детальное рассмотрение химических процессов с молекулярнокинетической точки зрения показывает, что большинство из них протекает по так называемому радикально-цепному механизму. Особенность цепных реакций заключается в образовании на промежуточных этапах свободных радикалов — нестабильных фрагментов молекул с малым временем жизни, имеющих свободные связи -СНз, -СгНа, С1-, N , HOj- и т. п. Связанная система сложных реакций, протекаюищх г.оследовательно, параллельно и сопряженно с участием свободных радикалов, называется цепной реакцией. По цепному механизму развиваются многие процессы горения, взрыва, окисления н фотохимические реакции. Значение цепных реакций в химии и в смежных с нею областях науки (биологии, биохимии) очень велико. Выдающаяся роль в изучении цепных процессов принадлежит советскому ученому акад. Н. Н. Семенову, сформулировавшему основные закономерности протекания таких реакций. Основные стадии цепных реакций зарождение цепи, продолжение цепи, разветвление цепи и обрыв цепи. Зарождение цепи — стадия цепной реакции, в результате которой возникают свободные радикалы нз валентно-насыщенных молекул. Эта стадия осуществляется разными путями. Так, при синтезе хлористого водорода из водорода и хлора образование радикалов осуществляется за счет разрыва связи С1—С1 (по мономолекулярному механизму) под воздействием кванта света b + Av l- +С1-. А при окислении водорода зарождение цепи происходит за счет обменного взаимодействия по бимолекулярному механизму Н2-гО = Н--f-НОг. Образование свободных радикалов можно инициировать введением посторонних веществ, обладающих специфическим действием (инициаторов). В качестве инициаторов часто используют малостабильные перекисные и гидроперекисные соединения. [c.219]

    Альдегид следует брать в большом избытке, чтобы подавить реакцию теломеризации. Степени превращения весьма низки, особенно при реакции с альдегидами низкого молекулярного веса, однако выходы обычно получаются хорошие, особенно с а.Р-нена-сышенными сложными эфирами (примеры б./ — 6.J).. В условиях свободнорадикальной реакции тетрагидрофуран также вступает в реакцию с олефинами (пример 6.4). В качестве источника свободных радикалов или инициаторов свободнораднкальноп реакции применяют перекиси, освещение ультрафиолетовым светом или воздух (пример 6.5). [c.168]

    ЗЛ.62. Различные тнлы дилатометров. Бели условия эксперимента не требуют особо сложной техники (например, для реакции полимеризации мономера радикальным инициатором при температуре 80°С), то растворитель и мономер просто подают в смесительную камеру, куда вводят катализатор, и [c.116]

    Поступают следующим образом. В бензол вводят инициатор (азоизобутиронитрил) и фенол и в присутствии кислорода (барботаж) следят методом ЭПР за концентрацией феноксильных радикалов 1п-. По максимальной концентрации 1п- находят отношение кт к и вычисляют 8- Для 2,6-ди-/я/>е/я-бутил-паразамещенных феноксилов значения к% лежат в интервале (2 -8- 10) 10 л/(моль - с), т. е. близки к константе скорости диффузионно-контролируемой реакции. При использовании этого метода следует обращать внимание на подбор инициатора. В частности, использование пероксидных инициаторов, из которых образуются очень активные алкоксильные радикалы, приводит к тому, что с 1пН и КН реагируют два вида радикалов К О- (из К ООК ) и КОз- (из КН). В такой системе (КН-Оз-1пН-К ООК ) максимальная (квазистационарная) концентрация 1п- описывается более сложным выражением  [c.458]

    Важную роль в реакциях карбанионов играет ассоциация ионов, она была подробно изучена в связи с анионной полимеризацией [66]. В табл. 2.7.30 приведены данные о реакционной способности свободных карбанионов ( ) и ионных пар (к ) живых анионов полистирола на стадии роста цепи при полимеризации стирола в различных растворителях. Разделенные ионные пары и свободные карбанионы реагируют приблизительно с одинаковыми скоростями, однако реакционная способность тесных ионных пар значительно ниже одновременно наблюдается сложная зависимость от противоиона и от растворителя. Стереохимия анионной полимеризации также изменчива. Так, метилметакрилат в присутствии литийорганических инициаторов в растворителях с низкой диэлектрической проницаемостью, например в толуоле, полимеризуется с образованием изотактического полимера. Однако добавление небольших количеств тетрагидрофурана или диметоксиэтана при низких температурах приводит к преимущественному образованию синдиотакти-ческого полимера. [c.560]

    Многие гетероциклические соединения под действием ионных инициаторов могут полимеризоваться с раскрытием цикла, образуя линейные макромолекулы. К таким соединениям относятся простые циклические эфиры, циклические ацетали, циклические сложные эфиры (лактоны), циклические амиды (лактамы) и цикличе-ске aMHFibi. Полимеризацию с раскрытием цикла проводят в таких же условиях и часто в присутствии тех же инициаторов, что и ионную полимеризацию ненасыщенных мономеров (см. раздел 3.2.1) следовательно, эти реакции чувствительны к тем же примесям. [c.162]

    При рассмотрении различных схем аутоокисления олефинов необходимо иметь в виду следующие факты 1) окисление 2,2,5, 5-тетраметилгексена-З не начинается даже после добавления значительного количества гидроперекисного инициатора в силу своего строения этот олефин неспособен к образованию аллильной гидроперекиси, но возможно, что его низкая реакционная способность вызвана также и стерическими факторами 2) стильбен, неспособный к образованию аллильной гидроперекиси и не окисляющийся при введении перекисного инициатора , дает эпоксидную группу и сложные эфиры гликоля в случае сопряженного окисления с бензальдегидом. Эти данные подтверждают, что реакции аутоокисления олефинов предшествует возникновение аллильных пероксирадикалов или гидроперекисей. [c.479]

    Термическое разложение многих азосоединений было использовано как источник свободных радикалов. Простые диалкил- или диарилазосоединения медленно образуют радикалы путем разрыва связей — N = N —, и эти радикалы являются не очень эффективными инициаторами. Диазосоединения типа ArN = N — КНК инициируют легче, как и нитрозоацетанилид. Наиболее употребительными инициаторами являются азосоединения со сложными группами типа дизамещенных ацетонитрилов. Уоллинг [69] составил таблицы скоростей разложения множества таких соединений при 80°. Хорошим примером служит быс-азоизобутиронитрил. Он разлагается с достаточной скоростью по реакции первого порядка, на которую растворитель почти не влияет, причем выделяется азот, позволяющий судить о скорости разложения и, следовательно, при известных допущениях, и о скорости инициирования цепей. [c.389]

    Инициаторами этой группы являются смеси окислителя и восстановителя эти смеси выбираются таким образом, чтобы получить свободные радикалы, пригодные для инициирования полимеризации путем реакций переноса электрона или группы, аналогичных рассмотренным в гл. И1. Они особенно полезны в водных растворах, хотя определенные комбинации их предложены и для использования в неводных растворителях. В 1946 г. Бэкон [33] описал каталитические свойства смесей персульфатов с несколькими восстановителями типа металлов и их солей, гидразина и гидроксиламина, тиолов, сульфитов, тиосульфатов и многоатомных фенолов. В последующие несколько лет появилось много исследований, и достижения в этой области были обобщены в 1955 г. тем же Бэконом [34]. Он классифицировал инициаторы по их главному окисляющему компоненту и рассмотрел поведение систем, основанных на перекиси водорода, персульфатах, диацилперекисях, гидроперекисях, кислороде и некоторых других окислителях. Использовались также и значительно более сложные трехкомпонентные системы [35, 36]. Они обычно содержат один из упомянутых выше окислителей, соль тяжелого металла и восстановитель, например сахар, тиол, оксикислоту или сложный эфир, бензоин или тиосульфат. При использовании солей металлов типа стеаратов или нафте- [c.408]

    Определение и интерпретация порядка фотохимической или инициированной реакции относительно концентрации стирола представляет значительно более сложную проблему. Из результатов ряда работ следует, что порядок реакции является промежуточным между 1 и 1,5 [12, 18, 19]. Были предложены два объяснения. Шульц и Хуземан [12] считают, что инициатор (перекись бензоила в их исследованиях) образует комплекс с мономером. Если константа равновесия образования комплекса Кс, а [М], [Са1] и [С] — концентрации мономера, инициатора и комплекса соответственно, то [c.78]

    При относительно низкой скорости инициирования, когда общая скорость полимеризации является сложной функцией скоростей инициирования и роста, установление кинетических зависимостей представляет известные трудности и требует особых приемов. Однако, если реакция обрыва отсутствует, можно относительно простым путем раздельно установить порядок реакций инициирования и роста. С этой целью полезно сопоставить кинетику полимеризации с кинетикой исчезновения исходного инициатора или возникновения растущих цепей. Концентрация активных центров при ионной полимеризации может быть измерена спектроскопическим путем [77, 79]. Такие измерения выполнены, например, Байуотером и Уорсфолдом [77] для системы стирол—бутиллитий—бензол, где о скорости инициирования можно судить по [c.346]

    Основные научные исследования относятся к химии индивидуальных магнийорганических и гетероциклических соединений. Установил (1906), что в реакциях Гриньяра эфир является не простым растворителем, а катализатором образования алкилмагнийгалогенидов. Применив вместо эфира в качестве катализаторов третичные амины, выделил (1908) индивидуальные магнийорганические соединения. Доказал возможность магнийорганического синтеза в любых растворителях с добавлением небольших количеств эфира или третичного амина. Установил (1906—1914) образование оксониевых, аммониевых и тиониевых комплексов, определил теплоты их образования и разложения. Разработал (1914— 1915) методы синтеза новых пир-рольных соединений, непредельных кетонов. Совместно с А. П. Терентьевым изучал (1914) действие сложных эфиров на пирролмагиий-бромид. Является одним из основоположников химии фурановых соединений в СССР. Разработал методы определения небольших количеств ацетона, формальдегида, ацетальдегида и других карбонилсодержащих соединений. Исследовал хлорофилл и гемии. Инициатор (1935—1945) практического использования волжских сланцев, битумов, природного газа. [22, 121] [c.556]

    Синтез высокомолекулярных полимеров на основе диенов методом Р. и. возможен лишь при проведении реакции в эмульсионных системах, содержащих инициатор в водной фазе (см. Эмульсионная полимеризация). Темиературный ход степени полимеризации — сложная функция энергии активации элементарных актов, к-рую для случая, отвечающего ур-нию (13), формулирует ур-ние (14)  [c.133]

    Эффективными итпгциаторами полимеризации являются разнообразные окислительно-восстановительные системы (ОВС), в к-рых свободные радикалы возникают в результате бимолекулярных или болое сложных реакций между окислителем и восстановителем. Основное преимущество этих систем перед другими инициаторами — малая энергия активации образования радикалов, составляющая ок. 42 кдж/моль (10 ккал/моль) вместо 125—170 кдж/моль (30—40 ккал/моль) при термич. диссоциации таких ипициаторов, как перекиси. В соответствии с этим ОВС могут применяться в широких температурных интервалах. Кроме того, в этих системах легко регулировать скорости процесса путем подбора концентраций компонентов. [c.425]


Смотреть страницы где упоминается термин Реакции сложные инициаторы: [c.950]    [c.132]    [c.342]    [c.264]    [c.11]    [c.281]    [c.334]    [c.167]    [c.242]    [c.479]    [c.242]    [c.94]    [c.71]    [c.48]    [c.223]    [c.295]    [c.79]    [c.597]   
Руководство по физической химии (1988) -- [ c.304 ]




ПОИСК





Смотрите так же термины и статьи:

Инициаторы

Реакции сложные



© 2025 chem21.info Реклама на сайте