Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окисление углеводорода до хинона

    При окислении углеводородов продолжение цепи ведут, чередуясь, радикалы ROa- и R-. Поэтому обрыв цепей возможен по реакции ROa- с акцепторами этих радикалов и по реакции R- с акцепторами алкильных радикалов X. Из результатов исследований радикальной полимеризации в качестве акцепторов радикалов R- хорошо известны такие соединения, как хиноны, нитросоединения, стабильные нитроксильные радикалы, молекулярный иод. Такие соединения тормозят окисление, но для заметного эффекта их приходится вводить в значительной концентрации. Связано это с тем, что с обрывом цепи по реакциям [c.116]


    Хиноны. Известно, что хиноны относятся к группе слабых ингибиторов окисления углеводородов. Они обрывают цепь окислительного процесса, реагируя с углеводородными радикалами [25, с. 241]  [c.177]

    В приведенной ниже методике окисления углеводородов в хиноны используется большой избыток хромовой кислоты в противном случае остается непрореагировавшее исходное вещество, затрудняющее очистку. При этом следует прервать реакцию в момент использования всего углеводорода, чтобы предотвратить дальнейшее окисление. [c.27]

    Общим способом получения хинонов является окисление двухатомных фенолов, амино- фенолов (функциональные группы в орто- или пара-положении), а также аминов (в основном, диаминов). Хиноны — производные нафталина или других аннелирован-ных аренов получают при окислении углеводородов хромовым ангидридом  [c.240]

    И. Н. Путилова и А. Р. Мягкова обнаружили, что ингибиторами коррозии свинца в дистиллированной воде могут служить некоторые многоатомные фенолы (гидрохинон, резорцин) и продукты их окисления—хиноны (парахинон). Интересно отметить, что фенолы тормозят процессы окисления углеводородов, H SOg и других веществ . [c.152]

    При окислении углеводородов ароматического ряда выходы хинонов небольшие. Системы с конденсированными бензольными ядрами окисляются в хиноны значительно легче, чем бензол. Поэтому для получения хинонов используют преимущественно полициклические углеводороды, такие, как антрацен, фенантрен, нафтацен.  [c.157]

    Для получения альдегидов, кетонов, хинонов и кислот используются процессы каталитического окисления углеводородов. [c.121]

    ИНГИБИРУЮЩЕЕ ДЕЙСТВИЕ ХИНОНОВ НА ПРОЦЕСС ОКИСЛЕНИЯ УГЛЕВОДОРОДОВ [c.314]

    При окислении ароматических углеводородов получают карбоновые кислоты ароматического ряда и их ангидриды, хиноны, гидропероксиды, при разложении которых образуются фенолы, [c.36]

    Углеводород расходуется полностью, причем часть его окисляется в СО2 и Н2О. Помимо основных продуктов, при окислении нафталина образуются хинон, малеиновая и бензойная кислоты. При окислении о-ксилола образуется большее количество малеиновой и бензойной кислот, а также некоторое количество фталимида /35/, Выход фталевого ангидрида в расчете на исходный углеводород составляет 93-97% /14/, а на некоторых недавно построенных заводах - еше выше. Следует заметить, что на заводах, производящих фталевый ангидрид, каталитические реакторы занимают относительно неболь- [c.305]

    Переходя к вопросу о причинах торможения реакции окисления нафтеновых углеводородов ароматическими, необходимо прежде всего отметить, что образующиеся при окислении ароматических углеводородов фенолы, хиноны и смолы являются активными антиокислителями [2]. [c.279]


    По такому механизму действуют хиноны, нитроксильные соединения, иод. Но поскольку радикал R быстро реагирует с кислородом, а концентрация R в окисляющихся углеводородах мала, то этот тип ингибиторов обладает низкой эффективностью в реакциях окисления. [c.27]

    Окисление ароматических углеводородов до хинонов. [c.297]

    При окислении некоторых полиядерных углеводородов О бра-зуются хиноны  [c.137]

    Окислением ароматических колец могут быть получены фенолы, хиноны и карбоновые кислоты, весьма важные для синтеза промежуточных продуктов, красителей и полимеров. Окисление ароматических колец, как правило, идет значительно труднее, чем окислительные реакции в боковых цепях. Из ароматических углеводородов бензол, в котором электронная плотность полностью выравнена, окисляется труднее всего. Нафталин, в котором эта выравненность нарушена, окисляется значительно легче. Еще легче по тем же причинам идут эти процессы с антраценом и фенантреном. Во всех случаях электронодонорные заместители в кольце облегчают течение реакций окисления. [c.323]

    Прямым окислением ароматических углеводородов не всегда удается получать хиноны с удовлетворительным выходом. Например, из двух простейших хинонов 1,2-бензохинон, имеющий очень высокий редокс-потенциал, можно получить только окислением пирокатехина оксидом серебра в строго безводном растворителе. Находящий промышленное применение и значительно более устойчивый [c.326]

    Образование хинонов из углеводородов всегда происходит легче, если двойные связи в а, р-положении к карбонильной группе стабилизированы алкильными и в особенности арильными группами. Так, например, бензол лишь в особо специфических условиях с трудом удается прямо окислить в хинон (с помощью перекиси серебра), антрацен же довольно гладко окисляется в антрахинон, фенантрен —в фенантренхинон нафталин по окисляемости занимает промежуточное положение. Окисление может быть осуществлено хромовой кислотой, перекисью водорода или кислородом воздуха в присутствии пятиокиси ванадия. Прп окислении хромовой кислотой в сравнимых условиях были получены следующие продукты  [c.27]

    Применяемый в этом случае окислитель (хлорноватокислый натрий в присутствии пятиокиси ванадия) не является сильным окислителем и хотя он легко окисляет весьма реакционноспособный антрацен, однако его нельзя применить для превращения углеводородов ряда нафталина и фенантрена в соответствующие хиноны или же для окисления аценафтена или флуорена (наблюдения проверявших этот синтез Физера и Поттера). [c.546]

    Антрацен и другие конденсированные углеводороды при окислении дихроматом в кислой среде образуют ароматические дикетоны—хиноны  [c.374]

    Механизм действия. Действие антиокислителей в топливах основано на участии в процессах окисления углеводородов. Эти процессы развиваются по цепному механизму через свободные радикалы [6— 18], поэтому их развитие можно задержать, замедлив образование свободных радикалов или их последующие превращения. Антиокислители могут действовать несколькими путями, но всегда продукты, образующиеся из молекулы антиокислителя, должны быть менее активны, чем свободные радикалы, возникающие в системе и ведущие реакционные цепи. Во-первых, антиокислители могут взаимодействовать с алкильными радикалами, дающими начало окислительным цепям, предотвращая таким образом возникновение этих цепей [19]. Так действуют, например, хиноны [4, V. 1, сЬ. 4 17]. Во-вторых, анти-. окислители могут стехиометрически взаимодействовать с гидроперекисями [19], препятствуя образованию при их превращениях новых свободных радикалов, обуслов-. ливающих развитие цепей. Способность реагировать с молекулами гидроперекисей установлена для серосо- держащих антиокислителей, например диалкилсульфи-дов [11, 17, 18], производных меркаптобензтиазола и [c.69]

    Для окисления антрацена в антрахинон смесь 90 г растертого в порошок углеводорода, 0,5 г пятнокиси ванадня, 76 г Н. х., I л уксусной кислоты и 200 мл 2%-ной серной кнелоты кипятят до начала бурной реакции 14]. Кипячение продолжают еще некоторое время и получают антрахинон с выходом 88—91%. Этот метод непригоден для окисления углеводородов рядов нафталина н фенантре-иа в соответствующие хиноны, а также для окисления аценафтена или флуорена. [c.425]

    Регулируемое окисление углеводородов в паровой фазе на пред-иазначенных для этого катализаторах представляет важный метод крупномасштабного производства кислородсодержащих производных — хинонов, альдегидов, кислот и их ангидридов. Эти производные умеренно стойки к окислению в условиях, применяемых для их получения, и поэтому приходится тщательно подбирать катализатор, температурные условия и состав смеси. Диксон и Лонгфилд опубликовали [171] превосходный обзор исследований по этим селективным реакциям окисления . Они уделили особое внимание окислению ароматических производных в более простые структуры и окислению олефинов . Окисление бензола в малеиновый ангид- [c.331]

    На рис. 1 представлены экспериментальные значения периодов индукции ионола и смеси ионола с хиноном. Ионол — известный акцептор пероксирадикалов, хинон — известный акцептор алкильных радикалов, причем хинон сам не дает периода индукции при окислении углеводородов, т. е. не является АПР. [c.81]


    В результате дегидрогенизации обычно образуется сложная смесь веществ, что, например, всегда наблюдается в случае тритерпенов. Поэтому в качестве первой стадии обработки продуктов реакции рекомендуется очень тщательная фракционированная перегонка. После этого отдельные фракции, если это необходимо, освобождаются от фенолов и окончательно очищаются путем перекристаллизации пикратов или тринитробен-зольных производных. Даже грубо количественное разделение этих смесей является длительной и сложной операцией. Первоначально главным способом выделения индивидуальных продуктов дегидрогенизации являлось приготовление пикратов. которые далее могут быть легко разложены едким натром или аммиако м, но в последнее время для этой цели используются также тринитро-бензольные производные. Оказалось, что последние менее растворимы и более устойчивы, чем пикраты, и для разделения их с большим успехом может быть применен хроматографический метод, причем в качестве адсорбента служит окись алюминия. Последний способ разделения из-за его удобства и чистоты рекомендуется также и для пикратов [12]. Если пикраты не получаются прямо при обработке спиртовым раствором пикриновой кислоты расфракционированных продуктов дегидрогенизации, Ружичка [1] рекомендует нагревание смеси в фарфоровой чашке до удаления спирта. В оставшейся после упаривания массе пикраты, которые (почти без исключения) кристаллизуются в маленьких иглах, легко отделимы от почти бесцветных пластинок пикриновой кислоты. Для очистки от масла иглы отжимаются на тарелке из пористой глины. Идеятификация даже известных продуктов дегидрогенизации иногда бывает затруднительной. Например, работа Ружички и сотрудников [50, 295] показала, что пикраты и тринитробензольные производные различных триметилнафталинов дают очень незначительное понижение точки плавления смешанной пробы или вовсе его не дают. Поэтому, кроме пикратов., следует, если возможно, использовать другие методы идентификации образование стиф ятов, комплексных солей с тринитротолуолом, а также получение продуктов окисления углеводородов, например хинонов. [c.194]

    Хиноны различного строения по-разному относятся к восстановительному действию сернистой кислоты, иодистоводородной кислоты и фенилгидразина. В соответствии с относительной легкостью перехода хиноидной структуры в ароматическую (в гидрохинон) наиболее легко поддается восстановительному воздействию бензохинон, затем следуют нафтохиноны, некоторые многоядерные кето-производные, например антантрон, и наиболее трудно восстанавливается антрахинон, являющийся скорее дикетоном, чем хинопом. Например, фенил-гидразин, который более или менее легко восстанавливает бензохинон, его производные и нафтохиноны, не изменяет антрахинона и его производных Электрохимическое восстановление, в частности, производимое как сопутствующее электрохимическому окислению углеводородов бензольного ряда в хиноны, также приводит к образованию гидрохинонов З . [c.699]

    Установив, что при каталитическом расщеплении симметричного дитолилэтана получаются в качестве главных продуктов толуол и ксилол, мы попытались изучить продукты конденсации, которые образовались за счет второго осколка молекулы. Можно было предполагать, что осколок, образующийся при расщеплении симметричного дитолилэтана, будет подвергаться конденсации с образованием многоядерных конденсированных углеводородов. При окислении последних с помощью хромового ангидрида в растворе ледяной уксусной кислоты должны были получаться нейтральные продукты — хиноны. Однако в наших опытах нам не удалось выделить последних, что может служить подтверждением отсутствия в продуктах конденсации многоядерных углеводородов. В результате окисления хромовой смесью нам удалось выделить смесь толуиловых и терефталевую кислоты. Образование терефталевой кислоты могло произойти только при окислении углеводорода с линейной структурой. [c.326]

    При газофазном окислении смесей углеводородов — о-ксилола и нафталина, нафталина и мегилнафталинов, антрацена и фенантрена, нафталина и антрацена — удается не только использовать более дешевое и доступное сырье, но и повысить селектизность окисления в сравнении с окислением индивидуальных углеводородов [53, с. 86—104 56—58]. Высокая эффективность окисления смесей антрацена и фенантрена объясняется тем, что обладающий меньшим потенциалом ионизации антрацен сорбируется пре-имущест)вецно на активных центрах, ответственных за образование хинонов, и тем препятствует расходованию фенантрена. Медленнее окисляющийся фенантрен, в свою очередь, препятствует сорбции образовавшегося антрахинона на центрах, ответственных за глубокое окисление, и поэтому защищает антрахинон от сгорания. В итоге повышается селективность превращения антрацена в антрахинон и фенантрена во фталевый ангидрид. Последние легко разделяются фракционной конденсацией [59]. [c.41]

    Высокие термическая стабильность и температура кипения полициклических ароматических углеводородов определяют их малую летучесть и повышенную термостойкость, стойкость к действию радиации полимерных материалов и пластификаторов, являющихся их производными. Повышенная по сравнению с моноцик-лическими ароматическими углеводородами реакционная способность облегчает получение полимерных материалов при взаимодействии полициклических ароматических углеводородов с формальдегидом [106]. При окислении полициклических ароматических углеводородов получаются разнообразные хиноны, ди- и полн- [c.100]

    Возможность получения, фенантренхинона газофазным окислением фенантрена воздухом ограничивается небольшим выходом хи-нона (3—5%), так как в обычных условиях происходит дальнейшее окисление хинона. Выход можно увеличить при существенном снижении степени конверсии фенантрена, так как углеводород, блокируя ответственные за полное сгорание центры катализатора, защищает хинон от глубокого окисления. Кроме того, выход фенантренхинона можно увеличить сокращением времени контакта до 0,02—0,10 с повышением содержания сульфата калия в катализаторе ВКСС и непрерывной модификацией катализатора небольшими дозами диоксида серы. В этих условиях в присутствии катализатора (соотношение УгОв Кг504= 1 4,5) получено 49% (от теоретического) фенантренхинона при степени конверсии фенантрена 50% [162]. [c.107]

    Аналогично протекает образование хинонов из ароматических углеводородов с конденсированными кольцами. Нафтохиноны, как и бензохиноны, получают окислением амино- или диоксипроизвод-ных, а также при парофазнсм окислении нафталина (стр. 225). Антра-хинон, имеющий огромное значение для синтеза ализариновых красителей, получали сперва некаталитическими методами (например, окислением антрацена хромовой смесью или азотной кислотой), которые, однако, уступили место различным каталитическим методам последние можно разделить на жидкофазные и парофазные. [c.213]

    Окисление — главный метод получения хинонов. При окислении можно исходить из соответствующего углеводорода, фенола или анилина, о- либо /2-ДИ0КСИ-, диамино- или оксиаминоароматических производных. Естественно, условия окисления будут тем мягче, а выходы тем больше, чем ближе исходное вещество к хинону по степени окисления, т. е. легкость получения бензохинона из различных источников уменьшается в ряду гидрохинон > фенол > бензол. С другой стороны, многие диокси- или диаминоароматические производные нестабильны и претерпевают окислительную полимеризацию. Нестабильные соединения следует предохранять от действия воздуха и использовать их по возможности быстрее. [c.201]

    Обычно этот метод дает плохие выходы, поэтому хиноны, вероятно, следует получать из углеводородов только в тех случаях, когда они сравнительно стабильны, а углеводороды легко окисляются. В качестве примера можно привести окисление антрацена до антрахинона (пример а). Иногда более высокие выходы дает применение йодной кислоты (пример 6.5), однако она не вступает в реакцию с ди- или терфенилом, периленом, коронеиом, трифениленом, хризе-ном или пиценом, а с ниреном дает дипиренил. [c.202]

    Оказалось, что нитрозофенол, который первоначально получается при действии азотистой кислоты на фенол, находится в равновесии с моноксимом хинона. Это равновесие, по-видимому, существует и при превращениях, в которых участвует нитрозофенол [9, 10]. Выделение моноксима хинона из смеси впервые, по-видимо-му, было осуществлено Ходжсоном [11]. На самом деле моноксим лучше получать нитрозированием в концентрированном растворе серной кислоты [12]. Соединения такого типа также можно получить с низким выходом (но зато простым методом выделения) окислением смеси ароматического углеводорода и гидроксиламина (пример а). [c.215]

    Окислительно-восстановит. Ф.р. В основе боль-щинства из них лежит фотоперенос электрона. Образующиеся в первичной стадии ион-радикады вступают в дальнейщие превращения, давая продукты окисления или восстановления. Напр., при взаимод. дурохинона с донорами электрона (аминами, спиртами) под действием света первоначально образуются семихиноновые анион-радикалы, диспропорционирование к-рых дает хинон и гидрохинон. Подобным образом происходит фотовосстановление красителей (акридиновых, оксазиновых, тиазиновых) до лейкоформ. Аналогично из ароматич. углеводородов НН в присут. доноров электрона О получаются анион-радикалы, к-рые в протонных р-рителях присоединяют протон и дают в конце концов продукты диспропорционирования, рекомбинации и т. п.  [c.181]

    Пероксильные радикалы спиртов обладают способностью как окислять, так и восстанавливать. Поэтому они реагаруют как с хинонами, так и с нитросоединениями, что приводит к торможению цепного окисления спирта. Пероксильные радикалы углеводородов и других соединений такой способностью не обладают. В силу этого в условиях сопряженного окисления спирта HR OH и углеводорода RH хинон тормозит только тот цепной процесс окисления, который ведут гидроксипероксильные радикалы спирта. Это обстоятельство положено в основу метода (Е.Т.Денисов, РЛ.Варданян,. 1972 г.). Проводят соокисление спирта и углеводорода в присутствии инициатора и селективного ингабитора (хинона, нитроксильного радикала, I нитросоединения). Ингабитор вводят в такой концентрации, чтобы перехватить все гидроксипероксильные радикалы до того, как они примут участие в продолжении цепи. Как показал опыт, для смеси циклогексен - циклогексанол достаточно ввести 3 Ю З моль/л бензохинона (333 К). Цепная реакция в этих условиях состоит из следующих ключевых стадий (где Q - хинон)  [c.465]

    Анатрацен и фенантрен еще менее устойчивы к реакциям окисления и восстановления, чем нафталин. 05а углеводорода окисляются до 9,10-хинонов и восстанавливаются до 9,10-дигидросоединений. Как ориентацию, так и относительную легкость этих реакций можно объяснить, еслн внимательнее рассмотреть структуры исходных и полученных веществ. Атака в положения 9 и 10 оставляет нетронутыми два бензольных кольца поэтому при этом те- [c.1003]

    Некоторые реакции окисления аренов уже были рассмотрены в разд. 2.З.6.7. Здесь основное внимание будет уделено окислению боковых цепей в аренах п окислению аренов в хиноны. Окисление незамещенных ароматических колец, сопровождающееся снижением энергии стабилизации, требует жестких условий, о чем упоминалось ранее (см. разд. 2.5.7), и представляет препаративную ценность, по-видимому, только в случае полициклических углеводородов. Так, озонирование антрацена смесью озона и азота дает после обработки щелочным пероксидом водорода 9,10-антрахинон с выходом 73%. При озонолизе фенантрена в метанольном растворе с последующей обработкой иодидом калия (для удаления промежуточных пероксидов) образуется бифенил-2,2-дикарбоксальде-гид с отличным выходом. Озонолиз пирена (уравнение 193) позволяет получать с удовлетворительным выходом функционально замещенные производные фенантрена, в которых заместители находятся в положениях 4 и 5. Такие соединения трудно получить иным способом. [c.414]

    Как уже отмечалось раньше, ряд полициклических углеводородов можно окислить непосредственно в хиноны. Этот способ применяется, в основном, для получения 1,4-нафтохинона, 9,10-антра-хинона и 9,10-фенантренхинона. Соединения типа бензохинонов или 1,2-нафтохинона получают обычно окислением соответствующих фенолов или аминов. Так, гидрохлорид 1-амино-2-нафтола окисляется хлоридом железа(1П) в водно( хлористоводородной кислоте и дает 1,2-нафтохинон примерно с 95%-ным выходом (уравнение 205). м-Бензохинон получают в промышленном масштабе окислением анилина диоксидом марганца в серной кислоте. Окисление фенола надуксусной кислотой проходит через стадию о- и -гидроксилирования, однако если п-дигидроксибензол дает п-бензохинон, то пирокатехин (о-дигидроксибензол) окисляется в гексадпеи- [c.419]


Смотреть страницы где упоминается термин Окисление углеводорода до хинона: [c.349]    [c.157]    [c.699]    [c.67]    [c.736]    [c.657]    [c.670]    [c.77]    [c.220]    [c.168]    [c.657]    [c.670]   
Синтезы органических препаратов Сб.3 (1952) -- [ c.82 ]




ПОИСК





Смотрите так же термины и статьи:

Хиноны

Хиноны из углеводородов



© 2025 chem21.info Реклама на сайте