Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение ионов металлов по реакциям комплексообразования

    Потенциометрическое титрование применяют также для решения общей задачи, заключающейся в определении составов образующихся комплексов и нахождении их констант устойчивости, причем ступенчатые реакции комплексообразования могут накладываться друг на друга. Наряду с электродами, обратимыми к ионам металла, применяют также электроды, измеряющие концентрацию лиганда и pH. Обработка экспериментальных данных производится по методам Бьеррума и Ледена с использованием вторичных концентрационных переменных. [c.638]


    То обстоятельство, что ионы металлических элементов образуют соли с весьма различной растворимостью, обладают разными кислотно-основными свойствами и способностью к комплексообразованию, позволяет проводить их разделение и устанавливать присутствие ионов различных металлов в их смесях. Качественный анализ представляет собой определение наличия или отсутствия иона металла в смеси ионов металлов в растворе. Такой анализ обычно проводят путем разделения ионов на группы с помощью реакций осаждения и последующего анализа на ионы индивидуальных металлов в пределах каждой группы. [c.137]

    В фотометрическом титровании могут быть использованы все химические реакции, применяемые в титриметрии — кислотно-основное взаимодействие, реакции окисления-восстановления, осаждения, комплексообразования. При определении ионов металлов наиболее широко используют реакции комплексообразования. Обобщение большого количества экспериментального материала по фотометрическому титрованию показало, что оно возможно, если сдр>10 (сд — концентрация титруемого вещества в пробе). Чувствительность фотометрического прибора достаточно высока и способна обеспечить регистрирование даже малых изменений поглощения, поэтому фотометрическое титрование относят к достаточно чувствительным методам анализа. [c.82]

    Темплатные синтезы всегда представляют собой превращения, в которых по сути атом металла (непосредственно в виде определенного, в том числе и нулевого заряда, иона или в виде комплекса, содержащего выгодные для реакции свободные или занятые лигандами позиции), обладающий необходимой стереохимией и электронным состоянием (строением), играет роль агента, направляющего реакцию по заданному или преимущественно по заданному руслу [79, с 147]. Ориентируя и активируя за счет комплексообразования молекулы конденсируемых веществ, ион металла выполняет роль своеобразной матрицы, определяющей строение образующегося соединения. Можно выделить две разновидности темплатного эффекта. В том случае, когда ион металла ускоряет протекание тех или иных стадий реакции, способствуя образованию конечного продукта, принято говорить о кинетическом темплатном эффекте. Если роль иона металла заключается в смещении равновесия за счет связывания образующегося продукта, это классифицируется как термодинамический темплатный эффект Конечный результат в обоих случаях одинаков- добавка темплатного агента позволяет получить соединение, которое без такой добавки не образуется или образуется с более низким выходом Следовательно, роль иона металла состоит не только и не столько в прямом подавлении побочных процессов, сколько в направлении реакции по выгодному для него пути В случае термодинамического темплатного эффекта синтезируемое соединение представляет собой весьма прочный комплекс При кинетическом темплатном эффекте может наблюдаться выделение свободного органического макроциклического соединения. Иными словами, ион металла, выполнив функции активирования и ориентации конденсирующихся групп А и В (уравнение (2.1)), может выйти из макроциклического окружения и снова координировать исходные вещества (кинетический темплатный эффект) или остаться внутри полости макроцикла (термодинамический темплатный эффект) [c.28]


    Равновесие реакции комплексообразования между ионами металла и подходящим лигандом при их определенном концентрационном соотношении,. Если лиганд обладает кислотно-основными свойствами, то устанавливается равновесие [c.113]

    Реагент взаимодействует с ионами многих металлов, например урана(IV), тория(IV), циркония(IV), скандия(III), лан-тана(П1), церия(1П), алюминия (III), бериллия (III), титана (III), ниобия(III), тантала(III), ванадия(IV), олова(IV), висмута(1П), галлия(1И), меди(П), палладия(П), магния(П) и кальция(II) с образованием окрашенных комплексов. Этот реагент использовали для фотометрического определения большинства перечисленных ионов [261, 401]. Хотя он и взаимодействует с различными металлами, реакция комплексообразования может быть избирательной для отдельных ионов при соответственно подобранных условиях реакции, в первую очередь pH раствора. Например, торий определяют с помощью арсеназо I в присутствии почти всех редкоземельных металлов подобным образом определяют цирконий и торий в присутствии урана и т. д. [c.158]

    Значение потенциала можно легко сдвинуть, изменяя кислотность среды, хотя возможности смещения его в отрицательную область (большие значения pH) ограничены образованием осадков гидроксидов выделяемых катионов. Выпадение гидроксидов можно предотвратить, используя реакции комплексообразования, но все же для получения хороших результатов необходимо принимать защитные меры (так как в результате комплексообразования уменьшается активность катионов металлов и их потенциал также сдвигается в отрицательную область). Сильно отрицательное перенапряжение водорода (пНз) на многих металлах по этой причине оказывает благоприятное влияние, поскольку дает возможность проводить электрогравиметрическое определение ряда металлов, как было указано выше. Наконец, следует также учитывать, что потенциал водорода в процессе электролиза сдвигается в сторону положительных значений, так как в растворе возрастает концентрация ионов Н3О+, образующихся эквивалентно количеству выделившегося на катоде металла. Потенциал выделения водорода и по окончании электролиза не должен достигать потенциала зоны осаждения. [c.262]

    ОПРЕДЕЛЕНИЕ ИОНОВ МЕТАЛЛОВ ПО РЕАКЦИЯМ КОМПЛЕКСООБРАЗОВАНИЯ [c.80]

    Большинство реакций макроциклических соединений проходит без разрушения макрокольца К ним относятся процессы комплексообразования, замещения одного иона металла на другой, окислительновосстановительные превращения координированного иона металла и реакции присоединения, замещения или отщепления определенных групп атомов от молекул лиганда или комплекса. Они широко используются для получения новых макроциклических соединений. В тех случаях, когда проходящие процессы невозможны без участия нона металла, их следует рассматривать как реакции комплексов Если же происходящие превращения затрагивают только макроциклический лиганд и не приводят к изменению координационного числа или типа донорных атомов в координационной сфере металла, то такие процессы рассматриваются как реакции модификации лиганда. К ним же относятся и реакции свободных макроциклических соединений Проведенное разграничение позволяет отдельно рассмотреть реакции, для прохождения которых обязательно участие иона металла, и те реакции, которые могут проходить и без него [c.34]

    В данной монографии обсуждены свойства только азотсодержащих азосоединений и их комплексов с ионами металлов, использование реагентов для определения элементов в различных объектах химическими и физико-химическими методами. Рассмотрены закономерности комплексообразования гетероциклических азосоединений с ионами металлов, влияние структуры реагентов, природы и положения заместителей на чувствительность реагентов, контрастность реакций комплексообразования и устойчивость образующихся комплексов. [c.7]

    Некоторые косвенные определения методом осаждения и комплексообразования также основаны на применении платинового электрода. В анализируемый раствор вводят окислительно-восстановительную систему, т. е. раствор, содержащий ионы какого-либо металла в двух степенях окисления. Далее в раствор погружают платиновую проволоку и приступают к титрованию. Рабочий раствор подбирают так, чтобы он реагировал с одним из ионов окислительно-восстановительной системы, но чтобы это взаимодействие происходило только после завершения основной реакции между определяемым веществом и рабочим раствором. В результате этого взаимодействия нарушается первоначальное соотношение концентраций окисленной и восстановленной форм, и в соответствии с этим Б точке эквивалентности изменяется потенциал платинового электрода. [c.465]


    Нами исследованы возможности применения потенциометрического метода для определения состава и констант устойчивости комплексов, образующихся в фазе низкоосновных анионитов [56]. Сетчатая структура анионита сужает область применения этого метода (по сравнению с его использованием для изучения комплексообразования с растворимыми полиоснованиями) по ряду причин. Из-за положительного заряда полимерной сетки анионитов в их фазу с большей скоростью диффундируют анионы, что обеспечивает прохождение в первую очередь реакции анионного обмена (I). Это приводит к увеличению рн равновесного раствора и образованию осадков гидроксидов и основных солей. Поэтому потенциометрический метод для исследования процесса комплексообразования в фазе анионитов может быть применен только в том интервале кислотности равновесного раствора, который исключает образование осадков. Мы пытались также оценить количество ионов металла, поглощенных анионитом вследствие доннановского распределения. Из-за положительного доннановского потенциала полимера концентрация незакомплексованных катионов в его фазе равна концентрации их в растворе. [c.125]

    Комплексообразование как способ понижения концентрации свободных ионов металла в растворе находит в аналитической химии широкое применение, особенно при осуществлении реакций маскирования и демаскирования , при осаждении гидроокисей металлов, сульфидов и металлорганических комплексов, а также в количественных экстракционных методах. Свойства комплексов важны также для ионного обмена и хроматографии. Комплексные соединения используют и при окончательном определении элементов при помощи таких физических методов, как спектрофотометрия, потенциометрия, полярография, хронопотен-циометрия или кондуктометрия. Электроосаждение как метод отделения или выделения различных элементов тоже связано с использованием процесса комплексообразования последний может обеспечить присутствие ионов металлов в достаточно низких концентрациях (это необходимо для получения ровных и плотно прилегающих осадков), а также позволяет создать условия, гарантирующие выделение из растворов лишь определенных металлов. На рис. 1 показано влияние концентрации лиганда на относительный состав обычной смеси, которая может быть подвергнута электролизу. В последнее время комплексометрическое титрование, особенно с применением этилендиаминтетрауксусной кислоты (EDTA) и ее производных, позволило проводить прямое объемное определение ионов металлов в растворе. [c.107]

    Использование координационных соединений в аналитической практике происходило параллельно с развитием теоретических представлений об этом классе соединений. В ряде случаев аналитические реакции были выявлены эмпирически и лишь позднее стало ясно, что они связаны с явлением комплексообразования. Многие колориметрические методы количественного определения ионов металлов основаны на комплексообразовании. Появление при комплексообразовании окраски связано с d—d-электронными переходами и с переносом заряда с металла на лиганд и в обратном направлении. Введение хромофорных групп в органические лиганды позволило получать разнообразные реагенты для фотометрического определения отдельных ионов. Современные теоретические представления позволяют интерпретировать и предсказывать характер абсорбционных спектров в зависимости от природы центрального атома и природы лигандов. [c.420]

    Большое значение в анализе приобрели также реакции комплексообразования с та трат-ионами, например, определение в присутствии и Ре при большом избытке Комплексообразование с аммиаком позволяет раздельно определять Си , С(1 , N1 и. При этом определение меди возможно в присутствии избытка указанных металлов. Широкое применение нашли реакции комплексообразования ионов металлов с Э А о еделение в присутствии Ре , ТГ в присутствии РЬ Мо в присутствии Ре и Си . Комплексообразование с триэтаноламином применяется при определении Ре . [c.456]

    В аналитической практике хемилюминесцентные реакции используют 1) для установления точки эквивалентности при титровании мутных или окрашенных растворов (применение хемилюминесцентных индикаторов в методах нейтрализации, окисления — восстановления, комплексообразования) 2) для определения основных компонентов хемилюминисцентных реакций (хемилюминесцентного реактива, окислителя или восстановителя), 3) для определения микроколичеств ионов металлов, которые являются катализаторами или ингибиторами хемилюминесцентных реакций 4) для определения органических веществ, которые являются ингибиторами хемилюминесцентных реакций, по их окислению. [c.364]

    Такая особенность характерна для реакций комплексообразования ионов металлов с подавляющим числом неорганических лигандов. В зависимости от ступенчатых констант устойчивости образующихся комплексов области существования отдельных комплексных форм будут, конечно, несколько изменяться, но общая картина останется неизменной— такие реакции, нельзя использовать в титриметрии. Нередко достаточно устойчивые комплексы ионов металлов с неорганическими лигандами образуются слишком медленно, как, например, комплексы хрома(П1), кобаль-та(П1), платиновых металлов, что также неприемлемо для титриметрии. Поэтому определенное аналитическое значение для титриметрии имеет практически лишь одна реакция [c.328]

    До сих пор предполагалось, что все реакции комплексообразования в основном независимы, что приводит к п различным релаксационным процессам. Тем не менее можно ожидать, что по крайней мере некоторые из 2п констант скоростей лимитируются диффузией. В таком случае можно использовать фундаментальную теорию Дебая [40]. Интервал применимости теории Дебая и ее модификаций [41] к реакциям комплексообразование, по-видимому, до сих пор не определен. В приведенной на стр. 411 схеме предусматривается существование ионов металла в [c.410]

    Совокупность рассмотренных представлений учитывают при разработке конкретных методик комплексонометрического определения металлов. В реальных системах механизм процессов комплексообразования может существенно усложняться за счет присутствия в растворах полиядерных форм металлов, гидролиза ионов металла, протонирования лигандов, образования полимерных и смешанных форм, а также различных внешнесферных комплексов. Слабую изученность совокупности этих сложных процессов на практике преодолевают тщательным подбором условий осуществления реакций при отработке соответствующих методик. [c.333]

    При небольшом избытке лигандных групп в системе определяющей является скорость изменения конформа-ционного набора полимера для образования координационных центров, обусловленных электронной конфигурацией ионов металла-комплексообразователя. Из-за чрезвычайно медленного установления равновесия изучать кинетику процесса комплексообразования в этих системах весьма сложно. Поэтому экспериментальное определение скорости сорбции ионов переходных металлов комплексообразующими ионитами большинство исследователей проводили в условиях большого избытка лигандных групп, что обеспечивает диффузионную кинетику процесса. Однако кинетику реакции комплексообразования в этих условиях определить не удается. [c.86]

    На равновесие реакций комплексообразования часто влияет концентрация ионов водорода. Кроме того, могут происходить конкурирующие реакции, когда в анализируемом растворе наряду с определяемым элементом присутствуют другие компоненты. В значительной степени подобные явления наблюдают в случае малоустойчивых и потому неудобных для аналитических целей комплексов, какими, например, являются тиоцианатный комплекс Ре(1 II), тетрамминат Си(П) и многие другие. Концентрация таких малоустойчивых комплексов заметно изменяется уже при добавлении нейтральных солей (КН4С1). Поэтому при разработке методик фотометрического определения металлов следует непременно оценивать возможное влияние подобных конкурирующих реакций (гл. 3.1). [c.248]

    Очевидно, концентрация ионов водорода при колориметрических определениях играет очень важную роль, и при использовании колориметрических методик надо руководствоваться следующими положениями реакции образования окрашенных комплексов металлов с анионами сильных кислот следует проводить в кислых средах если реактив является слабой кислотой, то с повышением pH степень связывания иона металла в комплекс возрастает. Однако при повышении pH раствора надо учитывать ступенчатость комплексообразования, проявление индикаторных свойств реактивом и возможность образования окрашенных комплексов реактивом с посторонними ионами интервалы pH, при которых следует проводить реакцию, как правило, определяют экспериментально. При проведении анализа химик должен строго придерживаться прописи, указанной в методике. [c.26]

    Исследование обычно проводится следующим образом. Вначале строится кривая титрования кислоты при тех же условиях (равная ионная сила), при которых хотят исследовать комплексообразование, однако без добавления ионов металла. Из этой кривой можно определить значения констант диссоциации кислоты, играющей роль лиганда . Затем снимают кривые титрования в присутствии ионов соответствующего металла. Из этих кривых можно рассчитать константы устойчивости образующихся комплексов, для чего необходимо сделать некоторые предположения о возможных реакциях комплексообразования. Обычно имеется ряд фактов, указывающих на определенный вид реакций комплексообразования, поэтому число теоретически возможных уравнений реакций может быть заранее сведено к минимуму. [c.199]

    Вторым, очень важным энтропийным эффектом является большая устойчивость металлических хелатов (см. определение хелата в разд. 3 гл. I). Аммиак и этилендиамин (еп) координируются ионом металла через аминный азот с точки зрения количества теплоты, выделяющейся в реакциях комплексообразования, две молекулы ЫНз эквивалентны одной молекуле еп. Однако комплексы этилендиамина значительно устойчивее, чем аналогичные комплексы аммиака (например, 1Ы1(ЫНз)0] +, 1 2 =" 6-10 /Сз/< 4 = = 5 10 =3. [Ы1(еп)з1 +, / 1-2-10 Кг= 1,2-10 Кз = 1,6-10 ). Экспериментально было показано, что большая устойчивость соединений этилендиамина обусловливается большим возрастанием энтропии, связанным с их образованием. [c.143]

    Ориентируясь на применение реакций комплексообразования для ттриметрического определения ионов металлов в принципе, казалось бы, можно использовать для титрования раствор любого комплексообразующего реагента, как неорганического, так и органического. Рассмотрим соответствие реакций комплексообразования ионов металлов с неорганическими и органическими лигандами перечисленным выше требованиям. [c.328]

    В результате реакции комплексообразования определенная доля ионов М"+ (тем большая, чем ниже константа нестойкости) будет присутствовать в растворе в виде сложных ионов МА - и, следовательно, концентрация свободных ионов металла должна уменьшиться. Это уменьшение и, соответственно, сдвиг обратимого потенциала электрода в этрицательную сторону будут тем значительнее, чем меньше констан-га нестойкости и чем выше концентрация добавки. Подбирая соответствующие комнлексообразо-ватели и их концентрации, можно изменить равновесные потенциалы присутствующих в растворе ионов различных металлов таким образом, чтобы обеспечить или их совместное осаждение в виде сплава, или наиболее полное разделение. [c.463]

    На закомплексованность ионов металла ионитом определенное влияние оказывает концентрация координационно-активных групп в фазе ионита с увеличением числа не связанных с ионами металла 1Г-групи равновесие реакции комплексообразования (I) смешается вправо (закомплексованность металла возрастает) и наоборот. Как следствие, закомплексованность ионов металла ионитом меняется прн изменении концентрации их в растворе в результате одновременного действия двух факторов — смещения равновесия реакции комплексообразования (I) и изменения константы устойчивости ионитного комплекса. Это приводит к увеличению коэффициентов распределения ионов металла с уменьшением их концентрации в растворе и одновременному уменьшению координационной емкости ионита (рис. 5.16 и 5.17). Отмеченная закономерность имеет практическое [c.226]

    Следует заметить, что реакции комплексообразования при определении металлов применяются не только для смещения Еуг в нужную область потенциалов. Эти реакции перспективны и в тех случаях, когда речь идет об определении ионов металлов при очень отрицательных потенциалах, например Са . В частности, с этой целью применяют реакцию вытеснения ионами Са из комплексов с ЭДТА. Такой метод называют косвенным вольтамперометрическим определением. Для этих целей можно использовать и волны восстановления электроактивных лиган,/ ов, например, ди-о-оксиазосоединений при определении А1 и 2г [c.456]

    Наилучшим образом согласуются структурные данные со значениями изменений энтропии А5 комплексообразования. Для ионов N12+, Си2+ 2п2+ изменение А5 примерно одинаково по значению, что хорошо соответствует однотипному строению шестивершинного координационного полиэдра комплексонатов ЭДТА, обнаруженному при структурных исследованиях,— [MedtaPл Для всех ионов М2+ переходных металлов (Зё-эле-ментов) аква-ионы существуют в виде октаэдрических комплексов [М(Н20)б] +, и, хотя для комплексов Си + известно определенное искажение октаэдрической конфигурации в результате эффекта Яна — Теллера [251], уравнение реакции комплексообразования можно записать в виде  [c.140]

    Термометрическое титрование применяется при изучении реакций комплексообразования, а также при определении ионов металлов путем измерения тепловых эффектов реакций образования комплексных соединений. В последнем случае обычно выделяют катионы металлов из раствора в виде нерастворимого соединения или используют реакции образования растворимых анионных комплексов. В некоторых случаях эти реакции протекают последовательно. Примером последнего может служить метод определения серебра по реакции ионов серебра с цианид-ионами. Образующийся вначале нерастворимый цианид серебра затем растворяется в избытке цианида калия, образуя ион дициапида серебра. [c.80]

    Экстракционно-спектрофотометрические методы применяются при исследовании процессов комплексообразования, определении констант экстракции и устойчивости комплексных соединений и констант равновесия химических реакций. При использовании метода экстракции (распределения) равновесную концентрацию иона металла — комплексообразователя в системе М—R органический растворитель — вода определяют в органической фазе, если поглощение образующегося соединения может быть измерено (см. стр. 126). Зная общую концентрацию металла, по разности находят его концентрацию в водной фазе. Например, при исследовании комплексообразования никеля с рядом диоксимов в интервале концентраций 4,5х X 10 — 1,3 10 моль/л равновесную концентрацию никеля определяют в органической фазе по поглощению соответствующего диок-симата никеля. [c.82]

    Реакции комплексообразования при анализе металлов применяют не только с целью смешения Ян, в нужную область потенциалов. Пришибил с сотр. [5] показали, что весьма перспективными в этом отношении являются также реакции обмена с участием комплексонов. Особенно эти реакции перспективны, когда речь идет об определении ионов металлов с очень отрицательным потенциалом 1/,, например Са +. С этой целью применяют реакцию вытеснения 2п + ионами Са + из ком-плексоната цинка с последующим полярографическим определением 2п +. Синякова и Чэнь Юи-Вэй [6] развили эту методику применительно к определению Са + в слюде. Кроме того, авторы [6] показали, что вместо комплексоната цинка можно применять и комплексонат кобальта. [c.299]

    Нолифенолы в кислых, нейтральных и слабощелочных растворах, при избытке хелатообразующего реагента образуют с отщеплением протона одноядерные хелаты с отношением М R, равным 1 I и 1 2 в случае двухзарядных и 1 1, 1 2 и 1 3 в случае трех- и четырехзарядных катионов металлов. Некоторые из этих комплексов могут быть малоустойчивыми из-за стерических или энергетических факторов. Во всех случаях спектрофотометрическое определение ионов металлов при помощи полифенолов требует хорошего знания равновесий реакций комплексообразования и зависимости реакций комплексообразования от pH раствора, чтобы правильно выбрать условия образования необходимого-для определения металла устойчивого хелата [2033]. [c.300]

    Рассмотренные процессы существенны не только для объяснения реакции комплексообразования акваионов металлов с ЭДТА в процессе титрования, но также и при исследовании процессов изменения окраски титруемого раствора в точке эквивалентности. В последнем случае определенное значение приобретает кинетика происходящего в окрестности точки эквивалентности процесса разрушения комплекса ионов титруемого металла с индикатором вследствие образования их более прочного комплекса с ЭДТА. [c.333]

    Особенность каталитического эффекта лиганда при определении рассматриваемых ионов проявляется в смещении волн в сторону более положительных потенциалов и увеличении их крутизны (рис. 12.6). Основной причиной такого поведения ионов металлов являются реакции комплексообразования, протекающие как на поверхности электрода, так и в объеме раствора. При этом г ат в действительности является квазидиффузионным, т.е. скорость реакции комплексообразования благодаря высокой концентрации лиганда существенно выше скорости диффузии. В качестве лигандов-катализаторов используются пиридин, у-пиколин, роданид- и ио-дид-ионы, тиокарбами По влиягаем последнего практически совпадающие волны Со Ре и разделяются на три волны. Для определения Т1 пригодна салициловая кислота и ее производные. Полифенолы являются катализаторами для определения Ое и [c.457]

    Измеряя pH анализируемого раствора, можно создать условия, при которых протекает реакция комплексообразования катионов только одного металла с ЭДТА, независимо от присутствия других катионов. Это происходит вследствие того, что на условные константы устойчивости комплексонатов металлов сильно влияет кислотность раствора (см. разд. 15.3.3 и 15.3.4). Понижение pH раствора ведет к уменьшению менее устойчивых комплексонатов (например, катионов щелочноземельных и некоторых других металлов) до такой степени, что их комплексонаты MY в растворе практически не образуются. Комплексонаты многозарядных ионов металлов, которые отличаются значительной устойчивостью, могут образовываться и при высокой кислотности раствора. Так, при рН=1—2 возможно определение многозарядных ионов (В1 +, Ре +, ТЬ 2г и др.) в присутствии двухзарядных ионов ( a +, Сс1 +, Mg +, u + и др.). [c.361]

    Однако возможна другая методика приведения ионита к абсолютно сухому состоянию — лиофильная сушка. Другой случай с бериллием представляет принципиальный интерес. Дело в том, что только в случае обмена одновалентных ионов мы имеем простейшие системы обмена, в которых ион каждого элемента существует то 1ько в одной единственной одновалентной форме. Для поливалентных ионов могут быть случаи, когда существует несколько ионных форм одного и того же элемента. Например, некоторые металлы склонны к реакциям комплексообразования с образованием координационных связей с различными координирующими группами. Например, бериллий при высоких концентрациях образует оксиио-ны типа [Ве (ОН) ] " и в растворе может существовать несколько ионных форм бериллия. Таким образом, возникает сложная система ионов, участвующих в обмене. Емкость поглощения ионита будет распределена между различными ионными формами элемента. В таких случаях необходимы дополнительные нреднолоншния о валентностях и количественных соотношениях участвующих в обмене ионов. Вероятно, весовой метод при дальнейшем его развитии может быть использован для определения ионных форм, молекулярных весов и валентностей, исходя из значений относительных изменений массы при перезарядке ионита в исходной, заданной ионной форме. [c.157]

    Таким образом, реакции образования окрашенных соединений ионов металлов с анионами слабых кислот следует проводить по возможности в менее кислых средах. Однако уменьшение концентрации Н" необходимо осуществлять очень осторожно, так как при повышении pH раствора может происходить образование основных солей или гидроксидов определяемых металлов может изменяться состав окрашенного соединения вследствие ступенчатости комплексообразования. В некоторых случаях, когда влияние конкурирующего комплексообразования ОН-ионов преобладает над влиянием депротонирования реагента, повышение pH раствора может привести к противоположным результатам, т. е. к уменьшению степени связанности иона М в окрашенное соединение. Поэтому максимальный выход светопоглощающего комплекса будет наблюдаться только в определенном интервале значений pH раствора. [c.26]

    Методы, при которых исследуемое вещество предварительно с помощью определенных реакций превращают в полярографически активное, дающее на полярограммах волны, пригодные для его определения. Работа [26] посвящена косвенному полярографическому анализу органических соединений, трудно восстанавливающихся или вообще не образующих полярографических волн. Путями подготовки таких веществ являются различные реакции с ионами металлов (в том числе комплексообразование), реакции нитрования, нитрозирования, галогенирования, окисления, гидролиза, образования щиффовых оснований и др. [c.305]


Смотреть страницы где упоминается термин Определение ионов металлов по реакциям комплексообразования: [c.514]    [c.64]    [c.63]    [c.154]    [c.793]    [c.126]    [c.425]    [c.324]   
Смотреть главы в:

Термометрическое титрование -> Определение ионов металлов по реакциям комплексообразования




ПОИСК





Смотрите так же термины и статьи:

Комплексообразование

Комплексообразованне

Определение иония

Реакции комплексообразования

Реакции с ионами металлов

Реакция определение



© 2024 chem21.info Реклама на сайте