Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрические потери в полимера

    Удельные сопротивления полимеров и их электрическая прочность (сопротивление пробою) еще недостаточно изучены связь их с другими физическими и химическими свойствами полимеров, а также с особенностями их внутреннего строения еще недостаточно выяснена. Наоборот, по диэлектрической проницаемости и диэлектрическим потерям полимеров имеется теоретический и экспериментальный материал, который дает возможность уже в настоящее время изучать связь этих свойств с другими свойствами полимеров. Измерение диэлектрической проницаемости является основным методом определения дипольного момента молекул и изучения их полярной структуры (см. 23). В связи с этим из пяти названных выше технических характеристик диэлектрических свойств остановимся на первых двух. [c.594]


    Прочие факторы влияющие на диэлектрические потери полимеров [c.286]

    Диэлектрические потери полимеров определяются двумя физическими причинами электрической проводимостью (сквозной ток) и дипольно-релаксационной поляризацией (ток замедленной поляризации). Понятно, что химическое строение, физическая структура, фазовое, агрегатное и физическое состояние будут формировать значение диэлектрических потерь. [c.151]

    Из полимеров замещенных стиролов наибольшее применение получили полихлорстиролы и полиметилстиролы. Теплостойкость полидихлорстирола значительно выше, чем полистирола, но наличие двух атомов хлора в ядре снижает пробивное напряжение и повышает диэлектрические потери полимера. [c.85]

    ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ И ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ ПОЛИМЕРОВ [c.171]

    Работа 9.1. Определение диэлектрической проницаемости и тангенса угла диэлектрических потерь полимеров [c.176]

    Из механических свойств фторопласта-4 следует отметить низкий коэффициент трения и ударную прочность при очень низких температурах. Нолностью фторированные полимеры относятся к категории отличных диэлектриков с низкими диэлектрическими потерями, которые практически не меняются при изменении температуры и частоты. [c.430]

    Диэлектрические потери в полимерах связаны с возникающей в них поляризацией при наличии электрического поля, меняющегося во времени. Суммарная поляризация диэлектриков, имеющих [c.232]

    Существенное влияние на релаксационные диэлектрические потери оказывает также пластификация полимеров. С ростом концентрации пластификаторов в полимере время релаксации, как правило, уменьшается, а область максимума дипольно-сегментальных потерь сдвигается в сторону низких температур, поскольку пластификация, как правило, существенно снижает температуру структурного стеклования. [c.248]

    У кристаллизующихся полимеров, так же как и у аморфных, диэлектрическая релаксация наблюдается как в области выше температуры стеклования, так и ниже ее. В этих полимерах диэлектрические потери обуславливаются двумя типами теплового движения — сегментальным движением в аморфной фазе и подвижностью небольших участков макромолекул, сохраняющейся даже при весьма низких температурах. [c.248]

    Значения е и tg б кристаллизующихся полимеров возрастают при повышении полярности полимеров значения е и tg б релаксационных диэлектрических потерь при кристаллизации полимеров уменьшаются tg б в 2—4 раза а е в 0,2—0,3 раза. Это связано, с одной стороны, с переходом полярных участков макромолекул в кристаллиты и, с другой стороны, с увеличением ширины релаксационного спектра полярных групп, оставшихся в аморфной фазе. [c.248]


    ПОЛЯРИЗАЦИЯ ДИЭЛЕКТРИКОВ. ДИЭЛЕКТРИЧЕСКИЕ ПОТЕРИ И ПРОНИЦАЕМОСТЬ ПОЛИМЕРОВ [c.173]

    Явление поляризации диэлектриков Диэлектрические потери Уравнение Дебая Релаксационный спектр ф Природа диэлектрических потерь ф Обработка экспериментальных данных ф Процессы электрической релаксации в полимерах [c.173]

    При наличии электрического поля, меняющегося во времени, диэлектрические потери в полимерах связаны с возникающей в [c.174]

    Для измерения диэлектрических потерь и проницаемости полимеров в широком интервале температур используются мостовые измерительные схемы (частотный диапазон 10- —10 Гц), схемы с колебательными контурами (10 —10 Гц), коаксиальные схемы (10 —10 Гц) и полостные резонаторы (10 —10 Гц). [c.183]

    Исследование диэлектрических свойств полимеров в широких температурно-частотных диапазонах является одним из наиболее эффективных способов установления особенностей их строения. Однако отклик полимерной системы на воздействие электрического поля определенной частоты отнюдь не эквивалентен механическому отклику . Поэтому, хотя метод диэлектрических потерь может быть применен для выявления области стеклования или размягчения полимеров, температура максимума диэлектрических потерь может достаточно существенно отличаться от температуры структурного стеклования, так же как частота (при заданной температуре соответствующая максимуму) может отличаться от частоты механического стеклования. Именно несовпадение релаксационных переходов, отвечающих электрическим или механическим воздействиям, по температурной или частотной шкале дает дополнительную информацию об уровнях структурной организации полимеров. [c.183]

    Диэлектрический метод оказывается пригодным как для полярных (поливинилхлорида, политетрафторэтилена), так и для неполярных полимеров (полиэтилена, полистирола и т. д.), поскольку полимеров, абсолютно лишенных полярных групп или примесей, практически не существует. Для всех полимеров установлены два типа диэлектрических потерь дипольно-сегментальные, связанные с подвижностью звеньев или большой совокупности их (кинетических сегментов) в электрическом поле, и дипольно-групповые, обусловленные движением, например, боковых полярных групп. Если в боковой цепи полимера содержатся полярные группы, способные ориентироваться в электрическом поле независимо друг от друга и имеющие разные времена релаксации, то наблюдается сложный пик дипольно-групповых потерь. Сегментальное движение в полимерах при температурах выше 7 с кооперативно, так как движения [c.183]

    Полимеры замещенных стиролов обладают повышенной теплостойкостью. Введение алкильных заместителей и атомов галогенов в бензольное ядро повышает термическую стойкость полимера. И. полимеров замещенных стиролов применение получили полихлор-и полиметилстиролы. Теплостойкость полидихлорстирола значительно выше, чем полистирола, но наличие двух атомов хлора в ядре снижает электрическую прочность и повышает тангенс диэлектрических потерь полимера. Полиметилстиролы менее теплостойки, чем полихлорстиролы, но сохраняют высокие диэлектрические свойства. Полифторстиролы обладают повышенной химической стойкостью, теплостойкостью и высокими диэлектрическими свойствами препятствием к их Широкому применению служит сложность синтеза и полимеризации фторстиролов, тогда как хлор-стиролы и метилстиролы получаются и полимеризуются легко. [c.95]

    Исследуя физические свойства нолинпромеллитимидов на различных стадиях термообработки (при их синтезе), Котрн с сотр. установили, что имидизация завершается при 200° С. Величина тангенса угла диэлектрических потерь полимеров при температуре выше 200° С резко уменьшается и в дальнейшем изменяется мало. Полоса поглощения амидных групп (3280 см ) в ИК-спектре убывает, а при 250° С исчезает полностью. После нагревания при 200° С и завершения имиднзации существенно уменьшается эластичность полимеров. По мнению авторов, происходит образование жестких внутримолекулярных имидных циклов. Однако эластичность резко увеличивается при последующем нагревании при 300—400° С. Измеряя модуль упругости, величина которого монотонно возрастает, авторы делают предположение о возможности протекания при нагревании кристаллизации или структурирования. Предположение [c.209]

Таблица VIII.20. Тангенс угла диэлектрических потерь полимера SP-1 при различных температурах и частотах Таблица VIII.20. Тангенс угла <a href="/info/1507954">диэлектрических потерь полимера</a> SP-1 при <a href="/info/133412">различных температурах</a> и частотах

    При исследовании электропроводности наиболее интересно и важно выяснить ее механизм и установить связь со строением полимера. Как уже отмечалось, значение эффективной электропроводности полимеров часто в значительной степени зависит от времени выдержки под напряжением. Например, в стеклообразном состоянии, а для многих кристаллических полимеров и при тут,, определяется поляризационными токами. Вблизи эти поляризационные токи вызваны установлением дипольно-эластической поляризации, а при Т<Г<. их можно иногда связать с дипольно-радикальной поляризацией. Влияние различных факторов молекулярной структуры полимеров на дипольно-эластические и дипольно-радикальные потери изучено всесторонне [19]. Значение фактора потерь связано с формулой (14) [см. стр. 14]. По имеющимся в литературе данным о диэлектрических потерях полимеров, с помощью этой формулы можно достаточно точно предсказать влияние строения макромолекулы, кристаллизации, ориентации и т. п. на значение эффективной электропроводности в интервале проявления дипольно-эластических и дипольно-ра-дикальных потерь. Например, было установлено [74], что при кристаллизации величина дипольно-эластических потерь в области максимума уменьшается примерно в 5 раз. Величина р , в области минимума вблизи Т согласно формуле (14), при этом должна возрастать в 5 раз. Именно такое возрастание р , при кристаллизации ПЭТ было обнаружено Сажиным и Эйдельнант [46], поэтому влияние строения и состава полимера на эффективную электропроводность в области, где р , определяется поляризационными, токами, ниже не рассматривается. В настоящей же главе приведены лишь некоторые данные о связи остаточной электропроводности со строением и составом полимеров. [c.95]

    Как указано выше, пропитанная бумага, используемая для изоляции кабелей, содержит тяжелые малоочищенные масляные дистилляты. Такие масла перед использованием обычно тщательно дегидратируют и деаэрируют. Следует обратить внимание на возможность повреждения бумажной изоляции, по-видимому, тихими разрядами. Тихие разряды, происходящие в слабых местах изоляции, вызывают появление пузырьков газа [124—127] и смолистых полимеров, которые (особенно первые) служат признаком дальнейших, более разрушительных разрядов. Интересно заметить, что ароматические и полиароматические углеводороды сами не только не выделяют газа, но и способствуют подавлению газообразования в масляных смесях, содержащих эти углеводороды. Окисляемость описываемых масел тоже имеет практическое значение увеличиваются электропроводность, диэлектрические потери и значительно увеличивается смачиваемость водой пропорционально небольшому увеличению кислотности [128—134]. [c.567]

    Наряду с диэлектрическими потерями, обусловленными поляризацией, обычно имеют место также потери, вызываемые некоторой небольщой проводимостью материала, от которой реальные материалы полностью не бывают свободны, хотя бы из-за того, что в них всегда содержатся другие вещества в виде примесей. У неполярных полимеров отсутствует ориентационная поляризация и наблюдаются диэлектрические погери, обусловленные только такой проводимостью по абсолютной величине они очень малы. [c.596]

    Переход от упругой деформации к высокоэластической у полимеров сопровождается возрастанием механических потерь и прохождением их через максимум (рис. II. 12). В соответствии с этим температура механического стеклования Ти. с определяется как температура, которой соответствует максимум механических потерь. Ее следует рассматривать как температуру, при которой практически перестает проявляться высокоэластичность.. Амплитуда деформации не влияет На Гм. с, так как по условию деформация достаточно мала. При больших напряжениях и деформациях у полимеров возникакзт качественно новые явления (вынужденноэластические деформации и разрушение). Закономерности, аналогичные представленным на рис. II. 11 и II. 12, наблюдаются, как было отмечено выше, при действии на полимеры переменных электрических полей. В этом случае роль модуля упругости играет диэлектрическая проницаемость, а механических потерь — диэлектрические потери. Электрические, поля действуют на те структурные [c.97]

    Исследование диэлектрических свойств полимеров — один из наиболее эффективных способов установления особенностей их строения. Диэлектрический метод оказывается пригодным как для полярных, так и неполярных полимеров (полиэтилен, полистирол, политетрафторэтилен и т. д.), поскольку полимеров, абсолютно лишенных полярных групп, практически не существует. В соответствии с корреляциями, рассмотренными в гл. I и И, для всех полимеров установлено два типа диэлектрических потерь ди-польно-сегментальные, связанные с подвижностью звеньев или большой совокупности их (кинетических сегментов) в электрическом поле, и дипольно-групповые, обусловленные движением, например, боковых полярных групп. Если в боковой цепи полимера содержатся полярные группы, способные ориентироваться в электрическом поле независимо друг от друга и имеющие разные времена релаксации, то наблюдается сложный пик дипольно-групповых потерь. Сегментальное движение в полимерах при температурах выше температуры стеклования кооперативно, так как подвижности сегментов данной цепи и сегментов соседних макромолекул взаимосвязаны. По этой причине в процесс ориентации вовлекаются области довольно больших размеров, чем и объясняются высокие значения кажущейся энергии активации сегментального движения. Ниже температуры стеклования Тс переход сегмента из одного равновесного положения в другое требует практически беС конечно большого времени, превышающего доступную продолжительность наблюдения. [c.243]

    Как в высокоэластическом, так и в стеклообразном состояниях величина диэлектрических потерь зависит от внутри- и межмоле-жулярных взаимодействий. Последние существенно могут зависеть -от полярности входящих в макромолекулу групп и от размера бокового радикала. Увеличение длины углеводородных (алкильных) радикалов однозначно сказывается на смещении максимума дипольно-сегментальных потерь в область низких температур. Это было показано на примере гомологического ряда по-лиалкилметакрилатов и других полимеров. [c.246]

    Для детального изучения механизма релаксационных явлений протекающих в полимерных системах, применяют разные диэлектрические методы, относящиеся к методам релаксационной спектрометрии . Для частот V 10 Гц прямые измерения диэлектрических потерь связаны с большими экспериментальными трудностями. При изучении молекулярной подвижности в полимерах диэлектрическим методом в частотном диапазоне 10 —10 Гц применяют метод постоянного тока. С этой целью используют данные по температурным зависимостям термодеполяризацианных токов I, функции деполяризации 11) и других параметров, зависящих от сквозного тока. [c.254]

    Расхождения в значениях энергии активации для процесса а-рёлаксации в ПММА, полученные методом термодеполяризации и методом диэлектрических потерь, могут быть объяснены спецификой обоих методов и особенностями молекулярного движения в полимере при температурах выше и ниже Тс (рис. VII. 20). [c.260]

    Не все технически важные свойства полимеров удоб.ны для проведения структурных исследований методами релаксационной спек-трометрии (см. стр. 231). Электропроводность и электрическая прочность относятся именно к этой категории свойств. Более того, хотя эти характеристики и взаимосвязаны, электропроводность вообще нежелательна при использовании полимерных диэлектриков, а при исследовании их методами, описанными в 1 и 2, электропроводность — своего рода помеха, поскольку ограничивает в области высоких температур применимость принципа ТВЭ. Известны случаи, когда в этой области путали диэлектрические потери с диссипацией энергии за счет наличия электропроводности. [c.261]

    Получаемая таким образом информация сходна с получаемой при механических воздействиях в том смысле, что позволяет достаточно четко регистрировать по меньшей мере два из, трех релаксационных состояний в аморфных полимерах и судить о влиянии кристалличности на релаксационные переходы в кристалли-. зующихся полимерах. (Некоторые дополнительные сведения по этому поводу см. в работах Борисовой [21, с. 34 24, т. 2, с. 740— 754].) В то же время следует учитывать, что электрический отклик полимерной системы на воздействие электрического поля определенной частоты отнюдь не эквивалентен механическому отклику Поэтому-то хотй метод диэлектрических потерь может быть применен для выявления области стеклования или размягчения, температура соответствующего максимума потерь может достаточно существенно отличаться от температуры структурного стеклования, так же как частота (при заданной температуре соответствующая максимуму) может отличаться от частоты механического стеклования. [c.264]

    Л. Поляризация Электрические свойства полимеров харак-диэлектриков. геризуются диэлектрическими потерями [c.173]

    Однако при 7 <7 с еще долго полностью сохраняется подвижность отдельных групп атомов, входящих в состав боковых цепей, которые совершают при тепловом движении колебания относительно положения равновесия. Кооперативность таких процессов невелика, а времена релаксации при разных температурах существенно отличаются. Методами диэлектрических потерь может быть обнаружена подвижность большинства атомных групп полимеров при условии, что они обладают дипольным моментом. Если графически представить зависимость коэффициента диэлектрических потерь г" от частоты (точнее, от lgv), то мы увидим, что существуют две области прохождения этой величины через максимум. При низких частотах наблюдается область дипольно-сегменталь-ных потерь, связанных с движением больших участков макромолекул. Проявление высокочастотной области етах обусловлено наличием колебательных движений относительно небольших радикалов, проявляющихся и в стеклообразном состоянии. [c.184]


Смотреть страницы где упоминается термин Диэлектрические потери в полимера: [c.244]    [c.251]    [c.273]    [c.140]   
Высокомолекулярные соединения Издание 2 (1971) -- [ c.429 , c.432 ]




ПОИСК





Смотрите так же термины и статьи:

Диэлектрические потери диэлектрических потерь



© 2024 chem21.info Реклама на сайте