Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Экспериментальное изучение ядерного магнитного резонанса

    Дальнейшее развитие теории требует уточнения количественных оценок и рассмотрения кинетики самоорганизации. Экспериментальный подход к проблеме состоит в изучении кинетики ренатурации белков при постоянных внешних условиях. Сведения о термодинамически устойчивых стадиях ренатурации при изменяющихся внешних условиях можно получить с помощью ядерного магнитного резонанса (см. 5.10). [c.254]


    Экспериментальное изучение ядерного магнитного резонанса [c.123]

    На рис. 42 приведена блок-схема аппаратуры, предназначенной для экспериментального изучения ядерного магнитного резонанса. Ниже [c.123]

    На рис. 42 приведена блок-схема аппаратуры, предназначенной для экспериментального изучения ядерного магнитного резонанса. Ниже применительно к спектрометру С-60 кратко рассмотрены некоторые вопросы экспериментального получения спектра ЯМР на этом приборе. [c.123]

    Книга представляет собой очередной том серии Катализ , хорошо известной советскому читателю. В настоящий, двенадцатый, том включено шесть обзорных статей, посвященных новым теоретическим и экспериментальным методам изучения катализа. В них рассматриваются следующие вопросы использование краев полосы поглощения К-серии рентгеновского спектра для изучения каталитически активных твердых веществ, применение нового метода дифракции электронов для изучения катализаторов, молекулярная специфичность в физической адсорбции. Весьма интересна статья, посвященная технике магнитного резонанса в каталитическом исследовании автор рассматривает отдельно ядерный магнитный резонанс и электронный парамагнитный резонанс — методы, которые позволяют получить ценные сведения о микроскопических свойствах твердых тел. [c.4]

    Основные научные работы посвящены изучению механизма гетерогенного катализа. Ввел в практику исследований гетерогенных катализаторов ряд новых спектральных методов (электронный парамагнитный резонанс, отражательную УФ-сиектроскопию, ядерный магнитный резонанс высокого разрешения). Впервые экспериментально изучил свойства поверхно- [c.216]

    Полное понимание молекулярных процессов, имеющих место [при фазовых превращениях, в общем требует экспериментальных исследований различного рода. Исследования структуры кристаллов, диэлектрической проницаемости, изменений объема и плотности, спектров ядерного магнитного резонанса, термических свойств — все представляет интерес. К сожалению, информация, необходимая для интерпретации фазовых изменений органических кристаллов, редко бывает получена более чем одним или двумя методами. Однако иногда может оказаться достаточным изучение только термических свойств, для того чтобы охарактеризовать некоторые виды фазовых изменений. Термодинамические данные особенно ценны при [c.78]

    Для изучения гидратации фибриллярных белков использовали разнообразные экспериментальные методы калориметрический [1—3], диэлектрический [4], измерение динамических механических свойств [5, 6], измерение равновесного поглощения при сорбции [7—9], ИК-спектроскопия 10] и ядерный магнитный резонанс [11, 12]. [c.230]


    В книге собраны важнейшие результаты, полученные при изучении полимеров с помощью метода ядерного магнитного резонанса. В двух начальных главах изложены физические основы метода ЯМР, описаны принципы устройства ЯМР-спектрометров, способы регистрации и обработки спектров, приведены соотношения и формулы, необходимые для обработки экспериментальных данных. [c.4]

    Рассмотрим радиоспектроскопию, и в первую очередь-метод ядерного магнитного резонанса (ЯМР). В основе его лежит изучение спектров резонансного поглоше-ния электромагнитных волн веществом, помещенным в постоянное магнитное поле. По сравнению с другими спектроскопическими методами ЯМР имеет то преимущество, что позволяет получить непосредственную и подробную информацию о строении молекул и происходящих в них процессах. В определенном смысле он незаменим при исследовании внутреннего строения и межмолекулярных взаимодействий в твердых, жидких и газообразных соединениях. Этот метод, впервые экспериментально реализованный в 1946 году, стал одним из мощнейших способов изучения природы веществ. [c.215]

    Зависимость температуры стеклования, характеризующей гибкость и подвижность кинетических элементов только в аморфной фазе, от степени кристалличности и ориентации представляет большой интерес. При изучении влияния кристаллизации полиэтилентерефталата на его диэлектрические потери, было отмечено, что кристаллизация приводит к уменьшению подвижности сегментов в аморфной фазе [36]. Применение метода ядерного магнитного резонанса позволило установить [44], что интенсивность движения в аморфных областях полимера уменьшается с увеличением степени кристалличности. Подвижность частей молекул, расположенных в аморфных областях, ограничена за счет того, что другие их части входят в состав кристаллических областей. Другой причиной снижения подвижности макромолекул в аморфной фазе, по-видимому, является напряжение. Херви экспериментально установил [45], что температура стеклования увеличивается при повышении напряжения при растягивании полиэфирного волокна. [c.111]

    В 50-х годах двадцатого столетия значительных успехов достигли экспериментальные методы изучения структуры и строения индивидуального вещества. Высокого совершенства достигли спектрально-оптические методы, интенсивно развивались рентгеноструктурный анализ и масс-спектрометрия. К тому же периоду относятся и первые успешные опыты по применению методов ядерного магнитного резонанса при изучении структуры молекул. Однако арсенал классических методов анализа и разделения сложных смесей веществ, даже с использованием таких приемов, как прецизионная ректификация и низкотемпературная дистилляция, оказался недостаточным для решения сложнейших научных задач, характерных для современной органической химии и смежных дисциплин. [c.5]

    Из рассмотрения материалов табл. 4.1 вытекает помимо всего прочего, что для установления структуры молекулы бензола методами колебательной спектроскопии потребовался только подсчет числа полос в инфракрасном спектре и спектре комбинационного рассеяния. Кстати, именно таким путем зачастую решается вопрос о характере координации атомов в комплексных соединениях, а также ионов в растворах. Между тем в самом общем случае при полном решении колебательной задачи в распоряжении исследователя оказывается весьма большая совокупность данных (частоты, форма колебаний, электрооптические параметры и т. д.), позволяющих определять не только строение и симметрию молекулы, но и судить о прочности связей, их взаимном влиянии, распределении электронной плотности и других важных характеристиках. Аналогичное положение имеет место и в других разделах спектроскопии. Так, при изучении и интерпретации электронных спектров органических, неорганических и комплексных соединений хорошие результаты дает проведение квантовохимических расчетов, расчетов на основе теории поля лигандов и т. д. По существу электронная спектроскопия является в настоящее время одним из основных экспериментальных методов, на которых базируется современная теоретическая химия. Совершенно особое значение имеет в связи с этим сочетание и совместное использование различных спектроскопических методов при решении структурных вопросов. Такой комплексный подход к проблеме открывает чрезвычайно широкие возможности и обеспечивает высокую надежность получаемой с его помощью информации о строении химических соединений. Укажем для примера, что при решении задач органической химии наилучшие результаты дает совместное использование методов инфракрасной спектроскопии, ядерного магнитного резонанса и электронной спектроскопии. [c.113]

    История развития и становления спектроскопии ядерного магнитного резонанса на ядрах С (ЯМР весьма любопытна. Десять-пятнадцать лет тому назад среди спектроскопистов и химиков, активно использовавших спектроскопию ПМР, существовало убеждение, что многие нерешенные в то время проблемы будут решены, как только появятся реальные возможности проводить измерения спектров магнитного резонанса углерода при естественном содержании изотопа в образце (1,1%). В течение долгого времени реализация этой голубой мечты оставалась невозможной из-за трудностей экспериментального характера, связанных главным образом с низкой чувствительностью спектрометров. Лишь Лау-тербур начиная с 1956 г. в полном одиночестве медленно, но методически публиковал данные изучения спектров ЯМР простейших классов органических молекул. Он использовал очень трудоемкую методику регистрации спектров (адиабатическое быстрое прохождение), которая оставляла мало надежд на широкое применение. Начиная с 1963—1964 гг. спектроскопией ЯМР начали заниматься еще несколько групп исследователей Грант (США), Стозерс (Канада) и Липпмаа (СССР). Этот этап развития метода был связан с внедрением методов двойного резонанса (спиновая развязка от протонов) и применением накопителей слабых сигналов на основе многоканальных анализаторов. Постепенно стали появляться исследования, содержащие большой объем измерений и широкие обобщения. С 1968 г. к этим группам присоединился Дж. Робертс с сотрудниками, начавший [c.5]


    В старой научной литературе по физиологии растений много говорилось о связанной воде — понятии, которое сейчас уже ке используется из-за его неопределенности. Хотя за много лет было получено множество убедительных указаний на то, что живая ткань содержит различным образом структурированную воду, тем не менее казалось, что этот вопрос не поддается экспериментальной оценке. Однако изучение живых тканей методом ядерного магнитного резонанса позволило провести количественное определение степени структурированности воды прн различных температурах [2, 3]. [c.145]

    Так как путем расчета еще нельзя получить достаточно полные данные о неоднородности сополимеров, их структуре и распределении блоков мономерных остатков в макромолекуле, которые могут оказать сильное влияние на свойства этих веществ, для решения этих вопросов широко привлекаются экспериментальные методы . Среди них наибольшее значение в последнее время приобрел метод ядерного магнитного резонанса (ЯМР), позволяющий судить о ближайшем окружении мономерных звеньев. Важную роль также играют хроматографический и полярографический анализ продуктов пиролиза сополимеров, инфракрасная спектроскопия, рентгеноструктурный анализ, дифференциальный термический анализ, изучение диэлектрических и механических свойств, центрифугирование в градиенте плотности, методы определения неоднородности сополимеров по результатам фракционирования и другие физико-химические методы. Чисто химические методы, дающее менее полные сведения, в настоящее время применяются редко. [c.75]

    В учебном пособии изложены теоретические основы физико-химических методов исследования электронного парамагнитного и ядерного магнитного резонанса, люминесцентных и фотохимических методов, импульсного фотолиза, газожидкостной хроматографии. Описание методов рассчитано на то, чтобы читатель, имеющий общую физико-химичес-кую подготовку, мог освоить эти методы, не пользуясь дополнительной литературой. Рассмотрено применение методов для изучения кинетики и механизмов химических реакций. Даны примеры экспериментальных работ. [c.191]

    Способность мицелл ионных ПАВ солюбилизировать значительные количества углеводородов, как и ряд других особенностей их поведения, заставила предположить, что неполярное ядро мицеллы должно иметь структуру, близкую к структуре углеводородной жидкости. Это предположение нашло экспериментальное подтверждение в результате изучения мицеллярных растворов ПАВ методом ядерного (протонного) магнитного резонанса [122, 124]. [c.18]

    В 1946 г. Парселл и независимо от него Блох разработали различные методы изучения ядерного магнитного резонанса. Экспериментальная установка для изучения ЯМР показана на рис. 16.2. Исследуемый образец помещен в трубку между полюсами электромагнита. Постоянное магнитное поле 5о направлено по оси 2. Напряженность этого магнитного поля несколько меньше значения, необходимого для резонанса. Точная настройка на резонанс достигается при помощи дополнительных электромагнитов, установленных на полюсах основного магнита. Обмотки этих электромагнитов питаются от генератора качающейся частоты, так что напряженность магнитного поля в образце изменяется, проходя через резонанс. Генератор качающейся частоты дает линейно нарастающее напряжение, которое при достижении определенного значения падает до нуля, а затем снова возрастает. Импульсами генератора качающейся частоты также запускается развертка осциллографа или самописца. [c.501]

    В 1946 г. Парселлом и независимо от него Блохом были разработаны различные методы изучения ядерного магнитного резонанса. Экспериментальная установка для изучения ЯМР показана на рис. 18-11. Образец помещен в однородное магнитное поле и окружен катушкой от радиочастотного генератора так, что осциллирующий магнитный вектор радиочастотных воля перпендикулярен магнитному полю. Частота генератора или сила магнитного поля изменяется до тех пор, пока радиочастота не станет равной частоте прецессии ядер в магнитном поле. В этом случае возникает резонанс. В результате энергия поглощается образцом, и некоторые спины ориентируются таким образом, что ядра переходят на более высокие энергетические состояния. Как только ядра возвращаются на [c.574]

    Связь в электронодефицитных молекулах. Существуют молекулы, в которых меньше электронов, чем это необходимо для образования двухэлектронпых связей. В качестве примера рассмотрим молекулу диборана ВгНб. Казалось бы, она должна иметь этаноподобную структуру. Однако в отличие от молекулы СгНа в ВгНв лишь двенадцать валентных электронов. Экспериментальные данные свидетельствуют о том, что в рассматриваемой молекуле атомы водорода неравноценны четыре из них легко замещаются (например, на группы СНз), а заме-Рис. 87. Строение диборана щение остальных двух связано с распадом молекулы [например, на две молекулы В(СМз)з1. О неравноценности атомов водорода в ВаН в свидетельствуют и результаты изучения ее ядерного магнитного резонанса.. Поэтому есть основания приписать диборану такую структуру  [c.182]

    Эксперименты по ядерному магнитному резонансу, проведенные в последние годы в ферромагнетиках и антиферромагнетиках [1], показывают, что для теоретического объяснения экспериментально наблюдаемых значений времени релаксации и ширины линии нужно знать детальное движение эле -тронных спинов в переходном слое между доменами. В связи с этим изучались элементарные возбуждения в переходном слое и влияние их на ядерный магнитный резонанс в ферромагнетиках — Винтером [2], а в антиферромагнетиках (СиСЬ 2НгО, NiF2) — Паулем [3]. Авторы этих работ при изучении элементарных возбуждений в переходном слое пользовались микроскопическим гамильтонианом в форме Гайзенбер-га, в то время как затухание и размагничивающие эффекты учитывали феноменологически. [c.125]

    Экспериментальные доказательства существования водородных связей впервые были получены при сравнении физических свойств водородных соединений. Классическими примерами являются аномально высокие температуры кипения ННз, Н2О и НР (рис. 9.1) которые обусловлены ассоциацией их молекул в жидкой фазе. Другие свойства, например теплоты испарения, дают дополнительные подтверждения ассоциации. Хотя физические свойства,, от1 ажающие ассоциацию, остаются полезным средством для установления существования водородных связей, наиболее веские доказательства этого были получены методами рентгеноструктурных и нейтронографических исследований кристаллов твердых веществ-и изучения твердых и жидких веществ или растворов с помощью ИК-спектров или спектров ядерного магнитного резонанса. [c.251]

    Спектроскопия ядерного магнитного резонанса высокого разрешения за последние годы нажла весьма широкое-применение в органической химии как при структурных и физико-химических исследованиях, так и при изучении тех особенностей органических соединений, которые связаны с распределением электронного облака в молекулах. Бурное развитие этого метода, который по праву может считаться самостоятельной отраслью науки, обусловлено интенсивным развитием техники ЯМР и совершенствованием теории, а также накоплением огромного экспериментального материала, обобщаемого в эмпирические правила и закономерности. Литература, непосредственно касающаяся метода ЯМР и его использования, в настоящее время настолько возросла, что полный ее обзор практически невозможен. Поэтому цель, которую ставили себе авторы, сводилась к рассмотрению лишь наиболее важных, принципиальных и обобщающих исследований. [c.3]

    Одним из наиболее полных исследований является работа по изучению комплексообразования в растворе между ионами Мп-+ и аденозинтрифосфатом (АТФ). Хорошо известно, что биологическая активность АТФ проявляется в присутствии ионов двухвалентных металлов, но точная природа взаимодействия между АТФ и этими ионами не была известна. Исследование ядерного магнитного резонанса протонов и релаксации в концентрированных растворах АТФ (0,35 моль л) показало, что ионы взаимодействуют с тремя фосфатными группами и частью аденино-вого кольца. По формулам (23) на основе экспериментальных значений времени релаксации были определены расстояния между ионами Мп + и протонами кольца. [c.300]

    Наряду с традиционной задачей синтеза новых соединений современная химия уделяет большое внимание изучению электронного строения соединений и его связи с физико-химическими свойствами. Это не удивительно. Область химических исследований настолько расширилась, число эмпирических закономерностей, установленных для отдельных классов соединений, настолько велике, что желание исс.ледователя навести порядок в море эксне-рил1ентальных фактов сейчас не только естественно, но и необходимо. Это может быть сделано лишь с привлечением новейших физических методов, как экспериментальных, так и теоретических. Многие экспериментальные методы изучения структуры и свойств соединений (рентгеноэлектронная, оптическая и инфракрасная спектроскопия, ядерный магнитный резонанс, электронный парамагнитный резонанс и др.) стали неотъемлемым элементом химических исследований. [c.3]

    Растворы металлов в чистом аммиаке. При изучении растворов металлов в чистом аммиаке методом ядерного магнитного резонанса было показано, что между неспаренным электроном и ядрами существует значительное взаимодействие, не зависящее, по-видимому, от концентрации металла. Несмотря на это, вследствие очень сильного трансляционного сужения в спектре ЭПР наблюдается синглетная линия. Экспериментально измеряемая ширина линий почти полностью определяется таким образом трансляционным сужением. Однако вклад в ширину линии вносят все же и сверхтонкие взаимодействия, причем время взаимодействия между электроном и любым из магнитных ядер должно быть меньше 10" сек. В пользу данного утверждения говорит проведенное Хатчиссоном и О Рейли [23] исследование зависимости ширины линии от вязкости раствора. Если взаимодействия с протонами играют важную роль, можно было бы ожидать значительного изменения ширины линии при переходе от МНз к МВз. Однако изменения практически не наблюдаются [23, 24]. Незначительное увеличение ширины линии при переходе от ЫНз к ЫОз относят за счет большего времени корреляции в растворе в МОз. С другой стороны, замещение на уменьшает ширину линии примерно в Уб раза. Такое уменьшение ширины линии близко к величине, которую можно ожидать в предположении, что остаточное уширение [24] обусловлено сверхтонким взаимодействием с азотом. [c.68]

    Открытие эффектов магнитного резонанса произошло в середине 40-х годов. В 1944 г. советский физик Е. К. Завойский впервые наблюдал поглощение электромагнитных радиоволн парамагнитным веществом, т. е. ему принадлежит заслуга создания метода ЭПР. Большой вклад в развитие этого метода внесли и дальнейшем также Б. М. Козырев, Д. Ингрэм и многие другие советские и зарубежные ученые. Что касается изучения переходов между ядерными зеемановскими уровнями в магнитном поле и разработки метода ядерного, в частности, протонного магнитного резонанса (ПМР) в конденсированных средах, то первыми в 1946 г. это независимо сделали американские физики Ф. Блох и Э. М. Парселл со своими сотрудниками. Конструирование и серийный выпуск промышленностью ПМР-спектрометров относится к середине 50-х, а ЭПР-спектрометров — к середине 60-х годов. Для спектроскопии ЯМР на других отличных от протонов ядрах приборы высокого разрешения стали производиться в 60—70-х годах. Бурное развитие и совершенствование экспериментальных и расчетных методов ЯМР и ЭПР на базе современной техники и ЭВМ за последние десятилетия привело к широкому и плодотворному их внедрению в химические исследования. [c.6]

    Хотя методы ЯМР и ЭПР основываются, вообще говоря, на одних и тех же принципах изучения резонансных переходов между, зеемановскими уровнями спиновых систем, количественные различия в абсолютных значениях магнитных моментов и их знаках, а также различный характер изучаемых объектов и решаемых задач обусловливают то, что эти методы развивались практически независимо и имеют существенные отличия в теории и экспериментальном воплощении. В то же время есть ряд аспектов, где явления ядерного и электронного магнитного резонанса тесно переплетаются. Это прежде всего методы множественного резонанса, например двойного электрон-ядерного резонанса (ДЭЯР). Проще рассматривать совместно также химическую поляризацию ядер и электронов и т. д. [c.7]


Смотреть страницы где упоминается термин Экспериментальное изучение ядерного магнитного резонанса: [c.7]    [c.356]    [c.53]    [c.21]   
Смотреть главы в:

Экспериментальные методы химической кинетики 1971 -> Экспериментальное изучение ядерного магнитного резонанса

Экспериментальные методы химической кинетики -> Экспериментальное изучение ядерного магнитного резонанса




ПОИСК





Смотрите так же термины и статьи:

Резонанс г ядерный магнитный



© 2025 chem21.info Реклама на сайте