Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеофильное замещение скорость

    При атаке атома углерода, несущего частичный положительный заряд (вследствие поляризации связи С—X), реагентом 0Н начинает намечаться образование связи НО—С с одновременным ослаблением С—Х-связи. Реакция идет через переходное состояние (реакционный комплекс), в котором три атома водорода расположены в одной плоскости, перпендикулярной линии связи НО—С—X. При дальнейшем удалении галогена от углеродного атома и перехода его в ион Х группа ОН приближается к атому углерода настолько, что образует с ним обычную ковалентную связь. Весь процесс замещения осуществляется в одну стадию. Рассмотренный механизм реакции называется бимолекулярным нуклеофильным замещением и обозначается символом 5к2 (Ингольд). Скорость этой реакции пропорциональна концентрациям галогеналкила и нуклеофильного реагента  [c.94]


    Аналогично реакции нуклеофильного замещения N2, реакция элиминирования у первичных алкилгалогенидов, названная 2, является бимолекулярном, и ее скорость также зависит как от концентрации субстрата, так и от концентрации реагента который действует в данном случае не как нуклеофил, а как основание. [c.106]

    Концентрация нуклеофильного реагента. Скорость реакции, протекающей по механизму N1, определяется скоростью диссоциации исходного субстрата на ионы, поэтому концентрация нуклеофильного реагента в данном случае не оказывает существенного влияния на скорость реакции нуклеофильного замещения. [c.129]

    Наиболее часто в реакциях нуклеофильного замещения скорость процесса зависит как от концентрации, так и от природы нуклеофила, причем реакция описывается кинетическим уравнением второго порядка. Как уже говорилось, в этом случае можно предположить как одностадийный механизм, так и. механизм с промежуточным образованием анионного интермедиата. [c.418]

    Существенное влияние на скорость реакции и выход продукта замещения оказывают наличие и объем заместителей при атакуемом атоме углерода. Реакционная способность алкилгалогенидов в реакциях нуклеофильного замещения уменьшается в последовательности, прямо противоположной склонности к реакции элиминирования  [c.269]

    Принято считать, что перенос положительно заряженной группы (R+) (называемой ионом карбония) осуществляется каким-либо из двух механизмов. Эти механизмы представлены здесь в простейшей форме. Тип механизма, по которому химикат вступает в реакцию, очень важен в биологической системе, где ограниченное количество вещества проходит через участки с изменчивой концентрацией реагирующих групп. По первому механизму (SnI) (мономолекуляр-ное нуклеофильное замещение) скорость реакции зависит от концентрации R+ и не зависит от концентрации нуклеофильных атомов Х . Например  [c.157]

    Реакции замещения, в свою очередь, делятся на мономолекулярные и бимолекулярные. В реакции мономолекулярного замещения весь процесс лимитирует диссоциация субстрата на ионы и скорость суммарного процесса замещения не зависит (слабо зависит) от концентрации атакующего агента. При бимолекулярном замещении скорость реакции прямо пропорциональна концентрации и агента, и субстрата. Каждый тип реакции обозначается своим символом 5л/1 — реакция нуклеофильного замещения, в которой лимитирующая стадия—диссоциация субстрата [c.167]

    Суть различных механизмов, предложенных для истолкования реакций нуклеофильного замещения, сводится к рассмотрению синхронного или асинхронного (ступенчатого) их протекания. В первом случае в реакции замещения может происходить одновременный разрыв старой и образование новой связи. Следовательно, в образовании активированного комплекса участвуют обе частицы субстрат и реагент. Эксперимент подтверждает факт участия обеих частиц в стадии, определяющей скорость реакции с синхронным механизмом. Повышение концентрации каждого компонента ведет к возрастанию скорости, которая пропорциональна произведению этих концентраций. Если атом углерода, при котором протекает замещение, является оптически активным, то можно проследить за стереохимией реакции. [c.143]


    Скорость такого нуклеофильного замещения зависит от многих факторов от строения радикалов, связанных с галогеном, от природы отщепляющегося галогена, основности нуклеофильного реагента, [c.93]

    Среди наиболее известных механизмов нуклеофильного замещения у насыщенного атома углерода имеются по меньшей мере два механизма, которые могли бы обеспечить сохранение конфигурации расщепляемой связи. Один из них, относящийся к типу SNl, заключается в сравнительно медленной (определяющей общую скорость реакции) диссоциации реагента у реакционного центра и последующей атаке нуклеофильным агентом со стороны ушедшей группы. Второй механизм, называемый двойным замещением 8к2, состоит в двойной инверсии расщепляемой связи. Здесь две нуклеофильные группы последовательно атакуют углеродный атом, каждый раз со стороны, которая противоположна уходящей группе субстрата. В результате двух таких синхронных процессов конфигурация расщепляемой связи возвращается к исходному состоянию. [c.170]

    Известно, что реакционная среда может оказывать существенное влияние на скорость химического взаимодействия [54—56]. Например, скорость нуклеофильного замещения с участием анионов резко воз- [c.66]

    Скорость реакций нуклеофильного замещения зависит от энер- [c.94]

    Константы скорости некоторых реакций нуклеофильного замещения типа РХ + V- — РУ +х- [c.332]

    Другого типа вторичные изотопные эффекты возникают в результате замещения водорода дейтерием у атома углерода, соединенного с уходящей группой. Эти вторичные изотопные эффекты а-дейтерия имеют величину от 0,87 до 1,26 [50]. Они также коррелируют с карбокатионным характером переходного состояния. В реакциях нуклеофильного замещения, где карбокатионный интермедиат не образуется (реакции типа 5к2), изотопный эффект а-дейтерия близок к единице [51]. В тех реакциях, в которых действительно промежуточно образуются карбокатионы (реакции типа 8к1), наблюдается более высокий эффект, зависящий от природы уходящей группы [52]. Природу изотопного эффекта а-дейтерия принято объяснять тем, что замещение водорода дейтерием оказывает более или менее сильное влияние на деформационные колебания связи С—Н в переходном, а не в основном состоянии [53], и в зависимости от природы переходного состояния скорость реакции может или [c.297]

    Сверху вниз в группах периодической системы нуклео-фильность возрастает, хотя основность падает. Так, обычный порядок нуклеофильности галогенидов выглядит следующим образом 1->Вг->С1 >р- (хотя, как будет показано ниже, этот порядок зависит от природы растворителя). Аналогично любой серосодержащий нуклеофил сильнее соответствующего кислородсодержащего аналога, и то же справедливо для соединений, содержащих фосфор и азот. Главная причина различий между основностью и нуклеофильностью заключается в следующем меньшие по размеру отрицательно заряженные нуклеофилы лучше сольватированы обычными полярными протонными растворителями, т. е. поскольку отрицательный заряд С1 по сравнению с I" более сконцентрирован, первый более плотно окружен оболочкой молекул растворителя, которая образует барьер между нуклеофилом и субстратом. Это особенно важно для полярных протонных растворителей, молекулы которых могут образовывать водородные связи с нуклеофилами небольшого размера. В качестве доказательств можно привести следующие факты многие реакции нуклеофильного замещения с участием небольших отрицательно заряженных нуклеофилов значительно быстрее происходят в полярных апротонных, чем в протонных растворителях [260], и в ДМФ — апротонном растворителе — порядок нуклеофильности галогенид-ионов имеет следующий вид С1->Вг->1- [261]. В другом эксперименте, проведенном в ацетоне, в качестве нуклеофилов были использованы ВщЫ+Х- и их (где Х- галогенид-ион). Ассоциация галогенид-иона в первой соли значительно ниже, чем в иХ. Относительные скорости реакций с участием ЫХ составили для С1- 1, для Вг- 5,7 и для 1 6,2 это нормальный порядок, тогда [c.76]

    Факторы, оказывающие влияние на реакционную способность кратных связей углерод — гетероатом в реакциях присоединения, аналогичны факторам, действующим в тетраэдрическом механизме нуклеофильного замещения [8]. Если А и (или) В — электронодонорные группы, скорость реакций снижается, а электроноакцепторные заместители способствуют ускорению реакций. Это означает, что альдегиды более реакционноспособны, чем кетоны. Арильные группы оказываются несколько дезактивирующими по сравнению с алкильными вследствие резонанса в молекуле субстрата, который невозможен при переходе к интермедиату  [c.323]

    В гл. 3 указывалось, что криптанды специфически сольвати-руют катионы щелочного металла из таких солей, как КР, КОАс и т. д. Этот факт может быть использован в синтетических целях для увеличения скоростей реакций нуклеофильного замещения и других реакций путем изменения степени свободы аниона (разд. 10.15). [c.78]


    Одна из трудностей, возникающих иногда при проведении реакций нуклеофильного замещения, заключается в том, что реагенты не смешиваются. Для осуществления реакции реагирующие молекулы должны столкнуться. В реакциях нуклеофильного замещения субстрат обычно нерастворим в воде и других полярных растворителях, тогда как нуклеофил чаще всего представляет собой анион, который растворим в воде, но не растворим в субстрате и других органических растворителях. Следовательно, при смешении таких реагентов их концентрация в одной фазе оказывается слишком низка для проведения реакции с удобными скоростями. Один из способов преодоления этой трудности — использование растворителя, растворяющего оба реагента. Как обсуждалось в разд. 10.14, для этой цели подходит диполярный апротонный растворитель. Другой спо- [c.91]

    Количественное кинетическое исследование реакции ароматического электрофильного замещения осложняется тем фактом, что молекула обычно содержит несколько способных к отщеплению атомов водорода. Вследствие этого измерение общей скорости реакции не дает столь полной картины, как при нуклеофильном замещении, где легко сравнивать субстраты, имеющие лишь по одной уходящей группе в молекуле. Необходимо [c.325]

    Влияние заместителей намного меньше, чем в реакциях электрофильного или нуклеофильного замещения, поэтому факторы парциальной скорости невелики (см. т. 2, разд. 11.8). Факторы парциальной скорости для некоторых групп приведены в табл. 14.2 [57]. [c.68]

    Сравнение скорости смешивания радиоактивного иода со скоростью рацемизации показывает, что в этой 5ы2-реакции нуклеофильное замещение осуществляется исключительно с обращением конфигурации. (В данном случае проблема корреляции абсолютной конфигурации реагента и продукта снимается, поскольку вопрос идентичности продукта исходному веществу или его энантиомеру зависит от того, сопровождается реакция замещения сохранением или обращением конфигурации.) [c.226]

    Одним из важнейших обстоятельств, часто приводящих к отсутствию простой корреляции между влиянием растворителя на реакцию и его диэлектрической постоянной, является специфическое взаимодействие реагентов с молекулами растворителя, т. е. специфическая сольватация. В качестве примера в табл. 21 приведены относительные константы скорости нуклеофильного замещения галогенов в п- [c.169]

    Влияние природы реагентов в реакциях нуклеофильного замещения. Очевидно, что в реакциях нуклеофильного замещения скорость реакции должна быть более высокой при замещении жесткого (или мягкого ) основания (разд. 2.3.2) основанием той же природы, чем в противоположном случае. Так, метил-л-толуолсульфонат HsOTs, отщепляющий жесткое основание (Ts — ОР), легче вступает в реакцию замещения с жестким основанием, таким, как 0 , чем с мягким основанием, таким, как ArS . Напротив, иодистый метил, отщепляющий мягкое основание 11 , легче вступает в реакцию замещения с мягким основанием ArSp, чем с жестким основанием, напримерЦЯ—О] . [c.231]

    Авторами [45] также найдено, что гидролиз и алкоголиз представляют собой мономолекулярное нуклеофильное замещение. Скорость его резко падает с уменьшением нуклеофильности групп, связанных с а-атомом углерода. Константа скорости сольволиза а,р-дихлорэтилфенилового эфира в этаноле в широких пределах не зависит от pH среды, что свидетельствует об отсутствии каталитического действия водородных или гидроксильных ионов в этих условиях (табл. [c.232]

    Чтобы понять, почему у одной группы реакций нуклеофильного замещения скорость возрастает в присутствии катализатора, а у другой остается неизменной, мы рассмотрим некоторые осхговные выводы, сделанные главным образом при изучении кинетики реакций. [c.394]

    Активация аниона посредством 18-крауна-6 в ацетонитриле (диэлектрическая проницаемость 39) была изучена в работе [99], где показано, что при этом происходит выравнивание нуклеофильности. Константы скоростей замещения в бензил-тозилате на, N3-, Ас , СЫ , Р , С1 , Вг и 1 отличались меньше чем на порядок величины. Ацетат и фторид проявляли значительно более высокую реакционную способность по сравнению с нормальными реакциями в гидроксилсодержащих растворителях. Хотя этот эффект активации аниона часто использовался в гомогенной среде, мы приведем только один поразительный пример. Меррифилд и сотр. [100] селективно отщепляли защищенные аминокислоты и пептиды от оксиациль-ных смол, используя цианид калия в ДМФ, Ы-метилпирролидо- [c.39]

    Впоследствии было проведено сравнение скоростей реакций нуклеофильного замещения между -октилметансульфонатом и ионами галогенидов, измеренных как в гомогенных условиях, так и в условиях МФК - [c.50]

    Такой механизм называется диссоцштивным и обозначается 8 1, поскольку это нуклеофильное замещение, в котором наиболее медленная (скоростьопределяющая) стадия включает диссоциацию отдельной молекулы. Различие между этими механизмами должно проявляться в энтропии активации, если ее вычислить из уравнения (22-16) по экспериментальным данным о константах скорости. Механизм 8 2 должен характеризоваться больщой отрицательной энтропией активации, поскольку активированный комплекс образуется из двух молекул. В отличие от этого механизм 8 1 должен характеризоваться почти нулевой энтропией активации, потому что в этом случае активированный комплекс лищь незначительно отличается от молекулы реагента. [c.379]

    В реакциях нуклеофильного замещения, протекающих в водном растворе, принято относить константы скорости реакций различных (например, алкилирующих) реагентов с нуклеофильными соединениями к удельным скоростям их реакций с водой а == [В11о = [НаО]. [c.210]

    Скорость реакции, протекающей по механизму 5м1, имеет первый порядок относительно алкилгалогенида и нулевой — относительно нуклеофильного реагента. Существование мономоле-кулЯ )ного механизма нуклеофильного замещения 5 1 подтверждают следующие экспериментальные факты независимость скорости реакции от концентрации нуклеофильного реагента сравнительно высокие значения энергии активации, наблюдающиеся обычно при гетеролитическом разрыве свя )ей рацемизация при использонании в качестве субстрата оптически активного третичного алкилгалогенида, а котором атом галогена связан с асимметрическим атомом углерода, нуклеофильное замещение галогена по механизму I и и.аеальном случае сонро- [c.127]

    Первая стадия нуклеофильного замещения атома галогена (промежуточное образование аниона) протекает медленнее второй стадии (отщепление аниона) и лимитирует скорость всего процесса. Действительно, 2,4-динитро-1-фторбензол реагирует с метоксидом натрия значительно быстрее, чем динитрохлорбензол. Если бы отрыв галогенид-иона от промежуточно образовавшегося комплекса на второй стадии определял скорость всего процесса, то динитрофторбеызол должен был бы быть менее реакционноспособным, поскольку энергия связи С—гораздо больше (450 кДж/моль), чем энергия связи С—С1 (275 кДж/моль), и, следовательно, вытеснение фторид-иона энергетически менее выгодно, чем вытеснение хлорид-иона. Более высокая реакционная способность динитрофторбензо-ла объясняется большим —/-эффектом фтора по сравнению с хлором. Поэтому на атакуемом нуклеофилом атоме бензольного кольца дефицит электронной плотности выше у динитро-фторбензола. Следовательно, отщепление галогенид-иона идет быстрее и на суммарную скорость всего процесса влиять не может. [c.403]

    Взаимоотношение структуры и реакционной способности. Уходящая группа типа алкоксила влияет на скорость реакции лишь стерически и индукционно. На это указывает наблюдаемое взаимоотношение структуры и реакционной способности, которое объясняется обычными эффектами, свойственными неферментативным реакциям нуклеофильного замещения ([7, 62, 129] см. также табл. 27). Поэтому можно заключить, что уходящая группа, а именно метоксил в реакции (4.42), не сорбирована на белке. [c.158]

    Нагревание реакционных смесей увеличивает скорость реакций нуклеофильного замещения. Однако при этом необходимо учитывать, что повышение те.мпературы влияет н на побочные процессы, обычно сопровождающие реакции нуклео(]1ильиого замещения (см. раздел 2.2.5). С изменением температуры изменяется соотношение выходов продуктов главной и побочных реакций. [c.97]

    В реакциях нуклеофильного замещения возможны случаи, когда за взаимодействие с субстратом Р—X конкурирует два или несколько нуклеофилов. В частности, во многих растворителях, имеющих нуклеофильные центры, взаимодействие субстрата с реагентом происходит параллельно с взаимодействием субстрата с растворителем. Например, при действии на /и/7< т-бутилхлорид водного раствора азида натрия наряду с /прет-бутилазидом образуется третичный бутиловый спирт. При этом выход азида выше, чем выход спирта, так как реакция с заряженным азид-ионом протекает с большей скоростью, чем с водой  [c.99]

    Поляр1[ый растворитель повышает скорость реакции нуклеофильного замещения, если в активированном комплексе разделение зарядов выражено сильнее, чем в исходных реагентах  [c.239]

    На скорость нуклеофильного замещения может оказать значительное влияние донорно-акцепторное комплексообразование. Так, ацетолиз 2,4,7-тринитро-9-флуоренил-п-то-зилата ускоряется в 20 раз, если в реакционную среду ввести фенантрен. Спектроскопически показано, что он образует комплекс с переносом заряда с производным флуоренила. Подавая п-электроны, фенантрен содействует поляризации связи С—ОТз и последующему отщеплению тозилат-иона [c.191]

    По своему механизму реакции нуклеофильного замещения делятся на две категории. Первичные алкилгалогениды (в которых атом галогена связан с первичным атомом углерода) реагируют обычно следующим образом сначала нуклеофильный реагент подходит к положительно заряженному атому углерода, связанному с атомом галогена, и из двух частиц (реагента и субстрата) образуется активированный комплекс, который затем распадается на продукт н галогенид-анион. Образование этого комплекса — самый медленный этап реакции и поэтому определяет полную скорость реакции. Таким образом, реакция является бимолекулярной и обозначается Sn2 (от англ. bimole ular nu leofili substitution — бимолекулярное нуклеофильное замещение). [c.139]

Таблица 21. Относительные константы скорости нуклеофильного замещения атома галогена в п-галогеи№ троб1М4золах на пиперидин в разных растворителях Таблица 21. Относительные <a href="/info/599192">константы скорости нуклеофильного замещения</a> атома галогена в п-галогеи№ троб1М4золах на пиперидин в разных растворителях

Смотреть страницы где упоминается термин Нуклеофильное замещение скорость: [c.304]    [c.207]    [c.100]    [c.124]    [c.95]    [c.420]    [c.7]    [c.115]    [c.224]    [c.224]    [c.274]   
Современная общая химия Том 3 (1975) -- [ c.2 , c.289 ]

Современная общая химия (1975) -- [ c.2 , c.289 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние строения нуклеофильных реагентов на скорость замещения у тетраэдрического атома фосфора

Влияние строения субстрата, реагента и среды на скорость нуклеофильного замещения

Замещение нуклеофильное

Замещение нуклеофильное мономолекулярное влияние структурных факторов на скорость

Константы скорости реакций нуклеофильного замещения

Механизм и скорость нуклеофильного замещения

Нуклеофильное замещение SN зависимость скорости от строения молекул

Нуклеофильное замещение SN соседних групп на скорост

Нуклеофильное замещение в алифатическом ряду зависимость скорости от строения

Нуклеофильное замещение в алифатическом ряду растворителя на скорость

Нуклеофильное замещение в алифатическом ряду соседних групп на скорост

Нуклеофильное замещение константы скорости

Растворители скорость нуклеофильного замещения

Растворители скорость реакций нуклеофильного замещения

Скорость реакции нуклеофильном замещении

Таблицы 2). Константы скорости передачи протона (нуклеофильное замещение у атома водорода)

Тройная углерод-углеродная связь влияние на скорость нуклеофильного замещения

Факторы, влияющие на скорость нуклеофильного замещения

Эффект растворителя на скорость при нуклеофильном эротическом замещении



© 2025 chem21.info Реклама на сайте