Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионизация в масс-спектрометрии при атмосферном давлении

    Правда, пока такие приборы применяются значительно реже хромато-масс-спектрометров на основе газовой хроматографии. Это связано с проблемами, возникающими при стыковке жидкостного хроматографа и масс-спектрометра эта стыковка (переходное устройство) значительно сложнее (и дороже), чем в случае ГХ/МС метода [10]. Разработка оптимального способа переходного устройства (интерфейса), основанного на непосредственном соединении двух приборов, использовании различного рода сепараторов и др., обеспечивающего эффективный перенос образца от хроматографа к масс-спектрометру, позволит получить чрезвычайно надежный способ идентификации растворенных в воде высококипящих ЛОС, трудно поддающихся анализу методом газовой хроматографии. Один из таких интерфейсов для ионизации элюата при атмосферном давлении изображен на рис. Х.25. [c.592]


    Назначение молекулярных сепараторов — поддержание заданного перепада давления на выходе из хроматографической колонки (близкого к атмосферному) и в источнике ионов масс-спектрометра (в зависимости от процесса ионизации от 10 до 1 мм рт. ст.) за счет удаления большей части газа-носителя, но без значительных потерь анализируемых соединений. В источнике ионов — одном из главных элементов прибора — осуществляется [c.199]

    Ионизация при атмосферном давлении. Этот метод интересен тем, что ионизация происходит вне вакуумной системы масс-спектрометра, а образующиеся ионы и нейтральные молекулы в потоке газа-носителя через диафрагму поступают в аналитическую часть масс-спектрометра. При ионизации в качестве источника электронов применяют Р-источник или коронный разряд. В качестве газа-носителя используют азот или аргон. Характер масс-спектров очень сильно зависит от чистоты газа-носителя, расстояния между электродом и диафрагмой. В общем случае масс-спектры, полученные этим методом, близки к [c.36]

    Соединение с источником ИАД Большой поток через масс-спектрометр трудно осуществить при использовании обычных методом ЭУ или ХИ Однако ионный источник с ионизацией при атмосферном давлении может работать с потоками газов и паров в несколько сот мл/мин, что сравнимо с потоком элюата через ЖХ колонку Сочетание ЖХ—МС — ИАД было [c.34]

    Был описан также масс-спектрометр для анализа лития путем испарения нитрата лития методом поверхностной ионизации [168]. Прибор представляет собой три Y-образные конструкции, расположенные под углом 120° одна к другой. Две из них представляют собой ионные источники, третий — коллекторную систему. Каждый из источников и коллектор образуют 60-градусный секторный масс-спектрометр, и путем обращения магнитного поля каждый из источников может быть включен в работу. Источники снабжены запорными вентилями, обеспечивающими возможность вскрытия источника без повышения давления до атмосферного в анализаторной трубке. Использование двух источников уменьшает время откачки, и анализ может проводиться непрерывно со скоростью 3 образца в час. [c.127]

    В ионном источнике нейтральные атомы и молекулы под воздействием определенных носителей энергии превращаются в ионы. Для того чтобы получить положительный ион из нейтральной частицы, последней следует сообщить некоторое количество энергии, способное по меньшей мере вызвать отрыв электрона с высшей занятой орбитали. Подвод энергии можно осуществить различными способами многие из них находят практическое применение в масс-спектрометрии для обеспечения ионизации нейтральных молекул. В хромато-масс-спектро-метрии применяются следующие методы, при которых ионизация происходит в газовой фазе ионизация электронным ударом, химическая ионизация, полевая ионизация и ионизация при атмосферном давлении. В обзорной работе [56] кратко рассмотрены эти методы ионизации. [c.280]


    Были предложены различные варианты сочетания жидкостной хроматографии и масс-спектрометрии, в частности, прямой ввод образца из жидкостного хроматографа в ионный источник с химической ионизацией с использованием растворителя в качестве газа-реагента [114]. В отдельных случаях для анализа следов применялась полевая десорбция [115]. Для этой же цели использовалась ионизация при атмосферном давлении (ИАД) [116—118]. При таких давлениях свободный пробег ионов настолько мал, что на 1 см дрейфа происходит по меньшей мере [c.94]

    Поток газа, выходящий из газового хроматографа, по существу имеет атмосферное давление. В то же время давление газа, входящего в ионный источник масс-спектрометра, не должно превышать Па при ионизации электронным ударом или 10 Па при химической ионизации (1 атм— 10 Па). Количество компонента пробы, однако, обычно составляет только очень небольшую долю элюата, выходящего из ГХ. Снижение давления приводит к тому, что количество образца оказывается недостаточным, и поэтому необходимо отделение газа-носителя. Этого можно достичь с помощью сепаратора, использующего физические свойства газов. Схема одного из таких сепараторов [24] показана на рис. 22-22. Газовую смесь, в которой носителем служит либо Нг, либо Не, пропускают через пористую [c.476]

    Поток газа на выходе из хроматографической колонки находится при давлении, близком к атмосферному (10 Па). Лавление же в источнике ионов при ионизации электронами составляет менее 10 Па, а в условиях химической ионизации — 10-100 Па. Поддержание указанной разности давлений только за счет интенсивной откачки газа-носителя возможно лишь при работе с капиллярными колонками (расход 0,5-5 мл/мин). При работе с насадочными колонками (расход 5-50 мл/мин) необходимо применение специальных устройств для отделения большей части газа-носителя (Не, Нг) без существенных потерь определяемых компонентов и уширения их хроматографических зон — молекулярных сепараторов. Описание их конструкций и принципов действия можно найти во многих руководствах по хромато-масс-спектрометрии [296, 298]. [c.308]

    Хотя в качестве ионного источника можно использовать дугу (разд. 8.1), промышленно, выпускают только искровой источник [8.5-1]. Масс-спектрометры с искровым источником (ИИМС) появились в 1960-х гг. Используют искру высокого напряжения (разд. 8.1). Была использована искра постоянного тока, но в производимых приборах применяют импульсное поле с частотой 1 МГц, чтобы получить цуг коротких импульсов через межэлектродный промежуток. Поскольку длительность импульса (20-200 мкс) и частоту повторения (1Гц -10 кГц) можно изменять довольно широко, можно оптимизировать условия ионизации в соответствии с типом пробы. В противоположность искровым источникам для атомно-эмиссионной спектрометрии, которые работают обычно при атмосферном давлении, искровой источник для МС функционирует в условиях вакуума. Электроды расположены в искровом кожухе, который также соединен с высоким напряжением. Электрическое соединение не дает большинству ионов сталкиваться со стенками вакуумной системы, что могло бы привести к распьшению материала кожуха. [c.136]

Рис. 9.4-8. Интерфейсные системы для сочетания хроматографов и масс-спектрометров в режиме on-line, а — устройство на основе делителя потока (ГХ-МС) б —устройство для сочетания со спектрометрами с ионизацией потоком ускоренных частиц в — устройство для сочетания с последующим термораспылением г —устройство для сочетания с последующим электрораспылением или ХИ при атмосферном давлении. Рис. 9.4-8. Интерфейсные системы для <a href="/info/445707">сочетания хроматографов</a> и <a href="/info/6125">масс-спектрометров</a> в режиме on-line, а — устройство на основе <a href="/info/39602">делителя потока</a> (ГХ-МС) б —устройство для сочетания со спектрометрами с ионизацией <a href="/info/96356">потоком ускоренных</a> частиц в — устройство для сочетания с последующим термораспылением г —устройство для сочетания с последующим электрораспылением или ХИ при атмосферном давлении.
    В типичном масс-спектрометре проба вводится в вакуумную камеру в виде паров или газа. Следовательно, твердые вещества или очень высококипящие жидкости (с температурой кипения > 250°С), как правило, не могут быть подвергнуты анализу с использованием обычного масс-спектрометра. Давление внутри масс-спектрометра приблизительно в миллиард раз ниже нормального атмосферного давления, таким образом непрерывный ввод пробы при оп-1те-анализе представляет достаточно сложную техническую задачу. Для того чтобы поддержать низкое давление в масс-спектрометре без перегрузки его вакуумных насосов, необходимо использовать специальный ограничитель потока. Существует четыре способа подключения масс-спектрометра к котро-лируемым технологическим линиям капиллярный ввод, молекулярное натекание, пористая прокладка и мембранное соединение. После того как проба введена в масс-спектрометр, она ионизируется в ионизационной камере. Наиболее общий метод ионизации — ионизащя электронным ударом. Следующей стадией за ионизацией молекул пробы является разделение заряженных частиц в соответствии с их массой. Эта стадия в приборе выполняется в масс-анализаторе. Различают два основных типа масс-анализаторов, используемых в масс-спектрометрах для промышленного анализа магнитные и квадрупольные масс-анализаторы [16.4-32,16.4-33]. Магнитные анализаторы обычно дают наиболее стабильные показания. Масс-спектрометры, способные проводить измерения ионов с массой более чем 200 атомных единиц массы (а.е.м.), обычно имеют квадрупольные анализаторы, поскольку они менее дорогие и более компактные по сравнению с магнитными анализаторами. [c.661]


    Стеклянная десольватационная камера, куда поступает аэрозоль, имеет длину 30 см и диаметр 40 мм, она обеспечивает испарение растворителя при атмосферном давлении. Далее аэрозоль с парами растворителя поступает в двухступенчатый сепаратор для отделения растворителя от газа-носителя. При использовании такого интерфейса с генератором аэрозоля и ионизацией ЭУ на масс-спектрометре Varian МАТ112S получены пределы обнаружения 10 нг для низкомолекулярных и 1 нг для высокомолекулярных соединений. Разработаны и другие конструкции интерфейсов с генерированием струи аэрозоля [77]. [c.886]

    Ни один из стабильных изотопов кислорода, азота, углерода или водорода не был открыт масс-спектроскопически, хотя первые точные определения распространенности были сделаны именно этим методом. В ранних работах кислород был признан элементом, состоящим из одного изотопа, и масса была выбрана в качестве эталона масс. Открытие в атмосферном кислороде и в результате изучения полос поглощения кислорода было осуществлено в 1929 г. [738, 739]. За этим быстро последовало открытие и С, проведенное также оптическими методами. Дейтерий не был идентифицирован до 1932 г. Первые определения относительной распространенности изотопов кислорода [81], азота [2076], углерода [82] и водорода [224] масс-спектрометрическим методом были осуществлены несколько лет спустя после открытия изотопов. В отличие от ранних работ, где ошибки возникали при обнаружении и интерпретации массовых линий, поздние измерения проводились с применением масс-спектрометра и ионного источника с электронной бомбардировкой. Возросшая точность идентификации ионов, относимых к каждому массовому пику, привела к открытию многих новых изотопов. Примером прогресса, вызванного более широкими возможностями используемых источников, может служить открытие Ниром [1492] изотопов кальция с массами 46 и 48. Более ранняя работа [83] свидетельствовала о наличии изотопов с массами 40, 42, 43 и 44. Для получения ионного пучка Нир испарял металлический кальций в пучок электронов и получил ионный ток больше 10 а для наименее распространенного изотопа кальция ( Са), присутствующего в количестве лишь 0,003% от изотопа <>Са. При изменении температуры печи в пределах, соответствующих 10-кратному изменению давления, пики с массами 46 и 48 оставались в постоянном соотношении к пикам с массой 40. Это доказывало, что указанные выше пики относятся к малораспространенным изотопам кальция, а не вызваны наличием примесей. Дальнейшее подтверждение существования малораспространенных изотопов было получено изменением энергии ионизирующих электронов и установлением зависимости между изменением интенсивности пучка ионов для каждой массы и изменением энергии электронов. В пределах ошибки эксперимента все ионы обладали одним и тем же потенциалом появления и одной и той же формой кривой эффективности ионизации. Сходные измерения были проведены с использованием двухзарядных атомных ионов. На пики с массами 24 и 23 налагались пики, обусловленные примесью магния и натрия. Эти ионы примесей могли быть обнаружены по их гораздо более низкому потенциалу появления по сравнению с потенциалами двухзарядных ионов кальция. Оказалось возможным провести измерение ионов ( Са) , вводя поправку на присутствующие ионы однако более значительные количества < Ыа) помешали определению ионов кальция при этом отношении массы к заряду. [c.71]

    Сочетание двух или большего числа таких компьютеризированных приборов дает дополнительные преимущества. В хромато-масс-спектрометрии хроматограф (газовый или жидкостной) используется вместе с масс-спектрометром. Возможно также совместное применение двух масс-спектрометров — тандемный масс-спектрометр или комбинация хроматографа с фурье-ИК-спектрометром или эта же комбинация в сочетании еще и с масс-спектрометром. С помощью масс-спектрометра высокого разрешения можно провести анализ на диоксин с разрешением 10 что позволяет определить, содержится ли токсическая форма диоксина в женском молоке или в жировых тканях организма ветерана вьетнамской войны. При помощи хромато-масс-спектрометрии можно определять самый ядовитый из изомеров диоксина — 2,3,7,8-тетрахлордиоксин. Этот метод теперь используется как рутинный для обнаружения в питьевой воде гало-генуглеводородов (полихлорбифенилы, винилхлорид), а также нитрозаминов, когда их концентрация значительно ниже уровня токсичности. Он применяется и для выявления большинства других загрязняющих атмосферу соединений, входящих в список Агенства по контролю за состоянием окружающей среды. Посредством метода тандемной масс-спектрометрии с ионизацией при атмосферном давлении может осуществляться непрерывный контроль за содер- [c.197]


Смотреть страницы где упоминается термин Ионизация в масс-спектрометрии при атмосферном давлении: [c.274]    [c.13]    [c.35]    [c.851]    [c.925]    [c.232]    [c.30]    [c.193]    [c.127]    [c.114]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.282 ]




ПОИСК





Смотрите так же термины и статьи:

Давление атмосферное

Жидкостная хроматография масс-спектрометрия ионизация при атмосферном давлени

Ионизация в масс-спектрометрии

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры

спектрометры давления



© 2024 chem21.info Реклама на сайте