Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

спектрометры давления

    При масс-спектрометрическом исследовании твердых тел и взаимодействия их поверхности с газами (парами) образец может быть помещен либо непосредственно вблизи зоны ионизации — в ионный источник прибора, либо в герметичный резервуар, соединенный с прибором устройством для ввода газа. В первом варианте, во избежание нарушений вакуумных условий работы масс-спектрометра, давление газа над образцом не должно превышать 10 Па. Во втором варианте на величину давления газа не накладывается каких-либо ограничений при условии соблюдения необходимого перепада давлений между резервуаром с образцом и ионным источником масс-спектрометра. [c.47]


    Этот метод обеспечивает и оптимальные условия для регистрации масс-спектра. Дело в том, что в течение всего относительно большого промежутка времени, когда образец извлекают из ловушки и вводят в масс-спектрометр, давление образца почти не изменяется, что улучшает работу масс-спектрометра. Каждый раз [c.219]

    Вторая задача при калибровке масс-спектрометра состоит в установлении зависимости между интенсивностью ионного тока и парциальным давлением компонентов в напускной системе. Соотношение давления газа в баллоне напуска и размера диафрагмы должно обеспечить линейную зависимость интенсивности пиков в спектре от давления. [c.263]

    Реакцию осуществляли под давлением, в реакторе периодического действия с мешалкой в присутствии кислотного катализатора, при температуре 75°С в течение 15 и 30 минут. По окончании реакции полученный органический слой анализировали на хроматомасс-спектрометре с целью определения процентного содержания в нем 4,4-ДМД, 4,5-ДМД и 4-ЭД. [c.179]

    Масс-спектрометры, предназначенные в основном для анализа газов, представляют собой специализированные конструкции, обеспечивающие стабильность газового потока через прибор во время измерений, стабильность температуры системы напуска газа и источников ионов, минимальное остаточное давление в приборе и др. МС-газоанализаторы пригодны для анализа любых газовых смесей, вплоть до самых сложных, содержащих как легкие, так и тяжелые газы, для анализа ионных атмосфер, состава сильно разреженных газовых смесей и т. д. В ряде случаев масс-спектрометры целесообразно сочетаются с газовыми хроматографами, в которых происходит предварительное разделение компонентов, с инфракрасными спектрометрами и т. п. [c.604]

    Принципиальная схема масс-спектрометра показана на рис. 99. Накаленная вольфрамовая лента дает пучок электронов. Анализируемое вещество в виде газа или пара вводится в очень малой концентрации, так чтобы его давление имело порядок мм рт. ст. [c.229]

    Приемник излучения. В ближней ИК-области (примерно до 2,5 мкм) в качестве приемников излучения используют сульфиды тяжелых металлов, например сульфид свинца. Такие детекторы установлены на некоторых серийных спектрометрах, предназначенных для работы в видимой области, что позволяет записывать на иих также спектры в ближней ИК-области. Для регистрации излучения с большими длинами волн используют пневматические приемники, в которых под действием ИК-излучения меняется давление газа термопары,, термометры сопротивления (болометры) и др. [c.204]


    Современные ИК-спектрометры позволяют снимать ИК-спектры газообразных, жидких и твердых веществ при высоких, комнатных и низких температурах, высоких или низких давлениях, очень малых количеств соединений, неустойчивых промежуточных продуктов реакции и т. п. [c.205]

    Масс-спектры дают возможность исследовать устойчивость и энергетику многозарядных ионов фуллеренов. С этой целью в [16] использовался масс-спектрометр с двойной фокусировкой и энергией электронов в ионном источнике 200 эВ. В [17] методом высокотемпературной масс-спектрометрии определены давления насыщенного пара фуллерена С60 в интервале 637-846 К и рассмотрено влияние нескольких побочных факторов на измеряемое давление. [c.10]

    В масс-спектрометрии под полной ионизацией понимают количество ионов, образуемых единицей количества вещества. Она определяется суммой высот всех пиков в спектре, умноженных на чувствительность максимального пика. Чувствительность выражается в единицах ионного тока на единицу давления. Чтобы сделать полную ионизацию независимой от инструментальных характеристик, ее измеряют по отношению к некоторому стандарту. [c.26]

    При молекулярном натекании исследуемой пробы парциальное давление каждого компонента в ионизационной камере не зависит от присутствия других компонентов и пропорционально только парциальному давлению этого компонента в исходной смеси. Градуировка масс-спектрометра сводится к снятию масс-спектра каждого компонента и к измерению давления в напускном баллоне, тогда как при вязкостном натекании для градуировки нужно использовать смесь, близкую по составу к анализируемой. Основной недостаток системы с молекулярным натеканием — быстрая убыль давления легких [c.37]

    Уменьшению селективности адсорбции способствует предварительное насыщение поверхности вакуумной системы масс-спектрометра исследуемым образцом. Этот прием при исследовании смеси воды и спиртов использовали Тейлор с сотрудниками, получившие зависимость степени адсорбции от парциального давления воды в системе напуска [67]. На основании изотерм сорбции вносились поправки в расчеты, что дало возможность получить довольно хорошую сходимость между результатами анализа и составом искусственных смесей, включающих этанол, диэтиловый эфир, третичный этил-бутиловый эфир и воду. Однако предложенный метод предусматривал очень громоздкий расчет даже в случае относительно простых по составу смесей. [c.44]

    За немногими исключениями с каждой смесью при одинаковой темнературе и примерно одинаковом давлении проводились два эксперимента. Все пробы жидкой фазы и четыре пробы пара подвергали анализу способом низкотемпературного фракционирования псе остальные пробы пара анализировали на масс-спектрометре. [c.116]

    Если анализируемый пар, напускаемый в ионный источник масс-спектрометра, термически уравновешен со стенками области ионизации, между интенсивностью ионного тока иона /+ и давлением в области ионизации р существует соотношение [c.62]

    В случае твердых веществ и труднолетучих жидкостей систему напуска следует обогревать для поддержания давления пара и во избежание явлений адсорбции. Вероятность термокаталитического распада пробы понижается при изготовлении поверхностей системы из инертных материалов, таких, как эмаль или золото. Несмотря на это, все же не удается предотвратить частичный распад многих соединений. В таких случаях необходимо прибегать к компромиссному решению и нагревать систему напуска и другие детали масс-спектрометра до такой температуры, при которой и адсорбция и термический распад поддерживаются незначительными.  [c.285]

    Интересно, что несмотря на существенные различия между газом и жидкостью в газах можно обнаружить явления, напоминающие растворение и сольватацию в жидких системах. Речь идет о так называемых кластерах в системах иои — газ. Систематическое изучение кластеров, состоящих из молекул растворителя, например воды и иона (катиона или аниона), началось с исследования продуктов, получающихся в масс-спектрометрах при сравнительно высоких давлениях (В. Л. Тальрозе). С конца пятидесятых годов и до настоящего времени в этой области накоплен довольно большой материал, позволяющий сделать общие выводы. Доказано, что катионы водорода и металлов, а также анионы галогенов в газовой фазе взаимодействуют с молекулами воды, причем собственно химическое взаимодействие, отличное от явлений гидратации в растворе, происходит сравнительно редко (так, ион лития образует дативную связь с неподеленной электронной парой кислорода молекулы воды за счет своей незаполненной орбитали химические связи с водой дает также ион фтора). [c.234]

    Назначение молекулярных сепараторов — поддержание заданного перепада давления на выходе из хроматографической колонки (близкого к атмосферному) и в источнике ионов масс-спектрометра (в зависимости от процесса ионизации от 10 до 1 мм рт. ст.) за счет удаления большей части газа-носителя, но без значительных потерь анализируемых соединений. В источнике ионов — одном из главных элементов прибора — осуществляется [c.199]


    Масс-спектральный метод позволяет проводить анализ химического состава смесей и элементный анализ. Возможен качественный и количественный анализ. Количественный анализ основан на пропорциональности интенсивности линий масс-спектра каждого из веществ его парциальному давлению в области ионизации. Суммарный масс-спектр аддитивно складывается из масс-спектров всех компонентов смеси. Можно анализировать все смеси (газы, жидкости, твердые), которые в ионизационной камере прибора полностью испаряются без разложения компонентов. Эффективность масс-спектрометрии как метода молекулярного анализа сильно увеличивается при его комбинациях с хроматографией, инфракрасной и ультрафиолетовой спектроскопией. Особенно эффективна комбинация с хроматографией, когда [c.451]

    В последние годы применение радиоактивных изотопов и масс-спектрометрии существенно облегчило получение данных о давлениях пара в различных металлических и шлаковых растворах. [c.145]

    В типичном масс-спектрометре проба вводится в вакуумную камеру в виде паров или газа. Следовательно, твердые вещества или очень высококипящие жидкости (с температурой кипения > 250°С), как правило, не могут быть подвергнуты анализу с использованием обычного масс-спектрометра. Давление внутри масс-спектрометра приблизительно в миллиард раз ниже нормального атмосферного давления, таким образом непрерывный ввод пробы при оп-1те-анализе представляет достаточно сложную техническую задачу. Для того чтобы поддержать низкое давление в масс-спектрометре без перегрузки его вакуумных насосов, необходимо использовать специальный ограничитель потока. Существует четыре способа подключения масс-спектрометра к котро-лируемым технологическим линиям капиллярный ввод, молекулярное натекание, пористая прокладка и мембранное соединение. После того как проба введена в масс-спектрометр, она ионизируется в ионизационной камере. Наиболее общий метод ионизации — ионизащя электронным ударом. Следующей стадией за ионизацией молекул пробы является разделение заряженных частиц в соответствии с их массой. Эта стадия в приборе выполняется в масс-анализаторе. Различают два основных типа масс-анализаторов, используемых в масс-спектрометрах для промышленного анализа магнитные и квадрупольные масс-анализаторы [16.4-32,16.4-33]. Магнитные анализаторы обычно дают наиболее стабильные показания. Масс-спектрометры, способные проводить измерения ионов с массой более чем 200 атомных единиц массы (а.е.м.), обычно имеют квадрупольные анализаторы, поскольку они менее дорогие и более компактные по сравнению с магнитными анализаторами. [c.661]

    Сепаратор для систем ГХ—МС, предложенный Рихаджем [36], состоит из двух струйных сепараторов, расположенных один за другим (рис. 5-7, б) в нем достигается значение коэффициента обогащения 100 и эффективность до 60% [47]. Первую камеру в этом сепараторе откачивают форвакуумным насосом (производительность 2,6 л/с), который поддерживает давление примерно 0,1 мм рт. ст. при скорости потока гелия 30 мл/мип. Вторая камера соединена с масляным диффузионным насосом (производительность 150 л/с при давлении 10 мм.рт. ст.). Для оптимальной работы масс-спектрометра давление во второй камере сепаратора должно быть меньше 10 мм рт. ст. Необходимый перепад давлений на первой ступени сепаратора определяется размером отверстия первого сопла (который влияет также и на работу газохроматографической колонки) и форвакзгумной системой. Для эффективной работы сепаратора необходимо, чтобы отношение средней длины свободного пдобега молекул газа к диаметру отверстия было малым (<1). Во второй камере труднее добиться вязкостного течения, так как давление там очень мало, благодаря тому что более 90% газа-носителя удаляется из смеси в первой ступени сепаратора, где средняя длина свободного пробега молекул составляет 0,001—0,01 мм. Поэтому размеры отверстий и расстояние между ними во второй ступени должны быть меньше, чем в первой [47]. [c.182]

    Первым обширным исследованием, проведенным с помощью масс-спектрометра, была работа Лейфера и Ури [23], которые изучали пиролиз диметилового эфира и ацетальдегида.Хотя им и не удалось обнаружить радикалы, но они смогли показать, что промежуточным продуктом разложения димети лового эфира является формальдегид, и проследить его концептрацию. Более успешной была попытка Эльтентона [24, 25], которому удалось сконструировать установку, способную обнаружить свободные радикалы при пиролитических реакциях и в пламенах даже нри высоких давлениях (около 160 мм рт. ст.). Он также смог обнаружить присутствие радикалов СНз при пиролизе углеводородов, радикалов СНг из СНгКг, а также СНО и СНз при горении СН в кислороде. Метод определения основан в принципе на том, что энергия электронов, необходимая для ионизации радикалов, меньше энергии электронов, необходимой для образования ионизированных частиц из самих исходных молекул. Это дает возможность определять малые количества радикалов в присутствии больших количеств соединений, собственные спектры которых затмевают спектры радикалов. [c.97]

    Первоначально конструкция выпускаемых масс-спектрометров была приспссоблоиа только для образцов, газообразных при комнатной температуре, но по мере того, как увеличивался интерес к изучению состава жидких смесей, были разработаны методы исследования образцов, принадлежащих к группе 2 и требующих сравиителькЬ незначительной переделки спектрометра. Однако низкие давления паров жидких или твердых образцов, относящихся к группе 3, вызывают необходимость существенного переоборудования спектрометра, чтобы можно было успешно работать с такими образцами. Последнее обстоятельство привело к разделению масс-спектрометрии на два самостоятельных разд( ла I) масс-спектрометрия при [c.343]

    Самым эффективным из современных методов исследования состава слоншых смесей и структуры присутствующих в них компонентов можно считать хроматомасс-снектрометрию, сочетающую огромную разделительную способность газовой хроматографии с высокой чувствительностью и идентификационной мощью масс-снектрометрии (метод ГХ — МС). Для создания этого метода потребовалось решить две главные технические задачи разработать быстродействующие масс-спектрометры с очень большой скоростью развертки спектров (за время, меньшее времени элюирования любого соединения из ГХ колонки) и специальных сепарирующих устройств для концентрирования элюатов. Современные масс-спектрометры позволяют получить спектр вещества в интервале массовых чисел 50—500 за время, меньшее 1 с, при разрешении т/Ът= 500 и более [328, 329]. Отделение большей части (80— 90%) газа-носителя от элюирующихся органических соединений, необходимое для поддержания в масс-спектрометре низких остаточных давлений, возможно с помощью молекулярных сепараторов различных типов струйных [330, 331], эффузионных с тонконорис-тыми стеклянными трубками [332] или металлическими мембранами [333, 334], сепараторов с полупроницаемыми полимерными мембранами (тефлоновой [335], силиконовой [336]) и др. [c.40]

    Для обнаружения анализируемых компонентов в ВЭЖХ широко применяются устройства, работа которых основана на измерении поглощения в ультрафиолетовой области, флуоресценции или электрохимических характеристик. Возможно также сочетание жидкостного хроматографа с масс-спектрометром (39). Несмотря на то, что наиболее универсальным детектором является рефрактометр, его невысокая чувствительность и селективность, несовместимость с градиентами давления привели [c.272]

    Поскольку области применения прибора чрезвычайно разнообразны и не представляется возможным дать исчерпывающую характеристику его применения для решения различных аналитических задач, мы ограничимся описанием отдельных типичных примеров использования масс-спектрометра для контроля технологических процессов. Один из первых примеров — это контроль работы газофракционирующих колонн деэтанизатора и депронанизатора [22]. Масс-спектрометр для непрерывного контроля одного или нескольких компонентов газового потока применяется в процессе получения ацетилена и этилена путем крекинга природного газа [23]. Этот процесс характеризуется коротким временем контакта, что обусловливает необходимость автоматического контроля скорости потока, температуры и давления в зависимости от состава газового потока. Состав потока контролировался с помощью масс-спектрометра. Отбор проб производился из 19 точек системы, которые подсоединялись к прибору общим трубопроводом. Были изучены состав сырья, зависимость состава крекинг-газа от температуры, эффективность работы диацетиленового скруббера. Определено содержание этилена и ацетилена в циркулирующем газе и эффективность поглощения растворителями ацетилена или этилена. Осуществлен контроль регенерации растворителя и чистоты получаемого продукта. [c.12]

    Как правило, масс-спектрометр работает при непрерывной откачке и постоянном натекании газа в прибор. В качестве примера рассмотрим вакуумную систему масс-спектрометра МХ-1303 (рис. 11). Высокий вакуум создается диффузионными парортутными насосами типа ДРН-10 производительностью 7—10 л1сек. Остаточное давление, достигаемое этими насосами при использовании ловушек с жидким азотом, составляет около 2-10 мм рт. ст. Один диффузионный насос используется для откачки источника ионов и прилегающей к нему части камеры анализатора. Остальная часть камеры анализатора и приемник ионов откачиваются другим диффузионным насосом. Дифференциальная система откачки позволяет значительно повысить давление анализируемого газа в источнике ионов, не повышая давления в камере анализатора, что увеличивает чувствительность масс-спектрометра без ухудигения его разрешающей способности. [c.35]

    В масс-спектрометре МХ-1303 ввод образца в ионный источник обеспечивается системой, схема которой вместе с усовершенствованиями, внесенными в систему авторами, изображена на рис. 12. Эти изменения позволили вводить в баллон напуска вещества, выкипающие до 200° С, минуя шлюз. Система напуска, выполненная в виде отдельной стойки, имеет самостоятельную вакуумную систему, предназначенную для откачки баллона напуска и вакуумных коммуникаций перед анализом и для ввода анализируемой пробы в баллон напуска. Предварительное разрежение создается форвакуум-ным насосом типа ВН-461 производительностью 50 л1мин. Для создания высокого вакуума служит ртутный диффузионный насос типа ДРН-10. Давление в системе измеряется при помощи блока, датчики которого — термопарные манометрические лампы типа ЛТ-4М — установлены на форвакуумном насосе и баллоне. На высоковакуумной ловушке установлены датчики ионизационного манометра (лампы ЛМ-2), [c.40]

    Общие правила работы. Нагренапис и охлаждение, кристаллизация, сушка и упаривание, фильтрование, экстракция и противоточное распределение, перегонка, работа с вакуумом и под давлением, возгонка, методы работы с полумикроколиче-ствами. Основы хроматографического разделения веществ, хроматографические методы. Идентификация органических веществ определение температуры плавления, тепературы кипения, плотности. Качественный элементный и функциональный анализ. Применение ИК- и УФ-спектроскопии и спектроскопии ПМР для идентификации органических соединений. Понятие о применении газовой хроматографии и масс-спектрометрии для идентификации веществ. Номенклатура ЮПАК. [c.247]

    После того как установлены молекулярные предшественники ионов, обнаруженных в масс-спектре, необходимо перейти от ионных токов к парциальным давлениям. Это стало возможным после того, как М. Инграм и Дж. Дроуарт оснастили ионный источник масс-спектрометра эффузионной камерой Кнудсена, схема которого приведена на рис. 2.18. С этого момента появилась возможность не только изучать состав парогазовой фазы, но и одновременно определять парциальные давления каждого компонента, а также зависимости давления от температуры. Масс-спектроскопический метод используют при изучении процессов парообразования многих труднолетучих веществ. [c.62]

    Источник излучения. Если в приборе для видимой или УФ-области источник излучения работает обычно в области 0,2—0,4 или 0,35—0,8 мкм, то в ИК-спектрометре он должен перекрыть значительно больший интервал длин волн. Наиболее распространенные источники ИК-излучения — нагреваемые током до 1500—1800° С стержни из карбида кремния (глобар) или из окислов редкоземельных элементов (штифт Нернста). Электрическое сопротивление таких источников уменьшается с повышением температуры, поэтому необходимо использовать балластное сопротивление. Глобар и штифт Нернста дают мощное ИК-излучение, но оно приходится в основном на ближнюю ИК-область и быстро падает с увеличением длины волны. Изменение энергии источника с длиной волны компенсируется в спектрометре программированным раскрытием входной щели прибора. В длинноволновой части ИК-спектра интенсивность излучения этих источников становится недостаточной, и в области ниже 200 см применяют ртутно-кварцевые лампы высокого давления. [c.203]

    В первом случае реакцию проводят в сосуде постоянного объема (7 = onst) и следят за ее ходом по изменению во времени какого-нибудь физического свойства исследуемого газа, например, по изменению давления или поглощения света в соответствующей области спектра. Если в реакции не происходит изменения числа молекул (Ап—О, т. е. P= onst), о ходе ее можно судить по анализу продуктов реагирующей смеси в различные интервалы времени с помощью таких методов, как газовая хроматография, спектроскопия, масс-спектрометрия. В методе струи газ пропускают с определенной скоростью через реактор фиксированного объема и вычисляют затем среднее время пребывания газа в зоне реактора, а также измеряют скорость реакции путем анализа входящих и выходящих газов. [c.98]


Смотреть страницы где упоминается термин спектрометры давления: [c.61]    [c.61]    [c.50]    [c.18]    [c.11]    [c.89]    [c.212]    [c.203]    [c.99]    [c.133]    [c.189]    [c.34]    [c.238]    [c.217]    [c.27]   
Аналитическая химия Том 2 (2004) -- [ c.2 , c.170 ]




ПОИСК





Смотрите так же термины и статьи:

Жидкостная хроматография масс-спектрометрия атмосферном давлении

Жидкостная хроматография масс-спектрометрия ионизация при атмосферном давлени

Измерение давления в масс-спектрометр

Ионизация в масс-спектрометрии при атмосферном давлении

Масс-спектрометр высокого давления

Непосредственное соединение жидкостного хроматографа высокого давления с масс-спектрометром

Определение давления паров металлов и сплавов масс-спектрометром



© 2025 chem21.info Реклама на сайте