Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Армированные пластики прочность

    К числу современных пластмасс относятся так называемые армированные пластики. В армированных пластиках в качестве наполнителя используют различные волокна. Волокна в составе пластмассы несут основную механическую нагрузку. Органопластики — пластмассы, в которых связующим являются синтетические смолы, а наполнителем — органические полимерные волокна. Их широко применяют для изготовления деталей и аппаратуры, работающих на растяжение, средств индивидуальной защиты и др. В стеклопластиках армирующим компонентом является стеклянное волокно. Стекловолокно придает стеклопластикам особую прочность. Они в 3—4 раза легче стали, но не уступают ей по прочности, что позволяет с успехом заменять ими как металл, так и дерево. Из стеклопластиков, например, изготовляют трубы, выдерживающие большое гидравлическое давление и не подвергающиеся коррозии. Материал является немагнитным и диэлектриком. В качестве связующих при изготовлении стеклопластиков применяют ненасыщенные полиэфирные и другие смолы. Стеклопластики широко используются в строительстве, судостроении, при изготовлении и ремонте автомобилей и других средств транспорта, быту, при изготовлении спортинвентаря и др. По сравнению со стеклопластиками углепластики (п.ласт-массы на основе углеродных волокон) хорошо проводят электрический ток, в 1,4 раза легче, прочнее и обладают большей упругостью. Они имеют практически нулевой коэффициент линейного расширения по цвету — черные. Они применяются в элементах космической техники, ракетостроении, авиации, наземном транспорте, при изготовлении спортинвентаря и др. [c.650]


    Пластики, армированные или же наполненные дисперсными фазами, обладают замечательными свойствами высокой удельной прочностью в сочетании с химической стойкостью, низкой теплопроводностью и технологичностью в изготовлении деталей и конструкций. Армированные пластики со специальными наполнителями применяют в качестве теплозащиты объектов космической техники, а также в конструкциях с высокой продольной устойчивостью. [c.156]

    Армированные пластики, представляющие собой сочетание непрерывной полимерной матрицы (со сравнительно малыми значениями модуля упругости и прочности) с прочными высокомолекулярными волокнами, появились сравнительно недавно, но уже сейчас играют значительную роль во многих отраслях техники. Наиболее прочные стекло-, боро- и углепластики получаются на эпоксидных связующих [1, 5, 6], что обусловлено особыми свойствами эпоксидных полимеров, которые делают их наиболее пригодными в качестве матрицы для композиционных материалов. [c.207]

    Волокнистые композиты отличаются от однородных полимеров и наполненных порошками пластиков тем, что они состоят из двух или более непрерывных по крайней мере в одном направлении фаз — сравнительно малопрочной непрерывной матрицы, заполняющей пространство между армирующими волокнами, и высокопрочных и высокомодульных волокон, которые могут быть ориентированными или хаотично расположенными. Роль матрицы сводится к передаче нагрузки между волокнами, которые воспринимают основную долю общей нагрузки. Возможность выбирать различные волокна, их ориентацию и различные типы связующих позволяет создавать разнообразные материалы и в щироких пределах изменять их характеристики. По прочностным и другим свойствам многие армированные пластики превосходят любой из входящих в их состав компонентов илн резко отличаются от них. Основным преимуществом композитов, сделавших их одним из наиболее перспективных новых материалов, является возможность достижения высокой прочности на единицу массы. [c.207]

    Кроме неорганических волокон для создания армированных эпоксидных пластиков применяют полимерные волокна, в частности новые высокопрочные синтетические волокна, наиболее известным из которых является волокно кевлар-49 [3, 21, 23]. Как видно из табл. 8.5, прочность некоторых полимерных волокон приближается к прочности стеклянных волокон в то же время их плотность значительно ниже, что позволяет достигать высокой удельной прочности. Однако модуль упругости этих волокон сравнительно невелик, что ограничивает применение армированных пластиков на их основе. Кроме того, данные волокна представляют собой сильно ориентированные полимеры с малой прочностью в поперечном направлении, что затрудняет получение материалов с достаточно высокой прочностью при сжатии и растяжении поперек волокна. Малые значения модуля упругости этих волокон снижают требования к механическим свойствам связующего, но для таких систем на первый план выступают вопросы специфического взаимодействия компонентов эпоксидного связующего с волокном, которые еще мало исследованы. [c.214]


    Как и в случае компаундов, наиболее распространенным и важным видом макроскопических дефектов в армированных пластиках является нарущение сплошности, проявляющееся в образовании пор и трещин. Появление трещин связано с внутренними напряжениями, описанными выше. Как и следует ожидать, трещины образуются прежде всего на границе раздела и по линии кратчайшего расстояния между волокнами. В наибольшей степени подвержены растрескиванию крупные включения связующего, причем в этом случае трещины развиваются на границе включения с волокном. В эпоксидных пластиках до нагружения трещины появляются довольно редко как правило, их образование связано с неправильным выбором полимера или слишком высокой температурой отверждения. Однако после даже сравнительно небольшого термостарения, не приводящего к значительной потере прочности, может образоваться пространственная сетка трещин, в результате чего материал становится негерметичным, хотя общая доля объема, занимаемая трещинами, невелика и не может быть обнаружена обычными методами. [c.216]

    Вследствие высокой текучести полистирола при повышенных температурах удобнее всего перерабатывать его методом литья-под давлением, хотя пригодны также прессование, экструзия и выдувание. Известное применение нашла механическая обработка блоков и пластин из полистирола в производстве линз и электротехнических деталей. Пленки, полученные путем выдувания, непрочны, но если этот процесс сопровождается продольной вытяжкой (ориентация), прочность негибкость их резко возрастают. Полистирольные волокна, уступая полиолефиновым, например по-эластичности, обладают другими ценными свойствами (упругость, прозрачность), что позволило применять их в волоконной оптике, электротехнике и производстве армированных пластиков. [c.287]

    Широкое практическое применение нашли армированные пластики (текстолиты, стеклопласты, углепластики), как называют композиции, состоящие из полимеров и высокопрочных волокон (стеклянные, химические и синтетические волокна, ткани и маты на их основе, графитовое волокно, превышающее по прочности стальное, а также угольное волокно, борное и т д.). [c.472]

    В армированных пластиках удается сочетать высокую прочность, характерную для волокнистых материалов, с упругостью, свойственной полимерам при этом волокно выполняет функцию армирующего материала, а полимер — роль связующего, служащего для передачи напряжения во время деформации образца от волокна к волокну и скрепляющего их между собой. Связующее, таким образом, обеспечивает большую одновременность работы всех волокон, более согласованное сопротивление разрыву, что и приводит к возрастанию прочности. Особенно велики подобные эффекты в тех случаях, когда волокна ориентированы в направлении деформирующего усилия параллельно друг другу, как, например, в СВАМе [55] (стекловолокнистый анизотропный материал), где прочность на разрыв достигает величины порядка 50 ООО кгс/см2 и даже выше. [c.473]

    Известны исследования углеродных волокон, получаемых на основе органических полимерных волокон. Углеродные волокна превосходят по прочности, легкости и эластичности стеклянные и металлические, используемые для получения армированных пластиков. Эластичность углеродных волокон в 4 раза больше эластичности обычных армированных пластиков [626, с. 392]. Созданы также комбинированные материалы на основе эпоксидной смолы, армированной волокнами карбида кремния [627, с. 39]. Для упрочнения материалов широко используют керамические усы , обладающие прочностью в 10—100 раз большей, чем прочность других материалов (стекловолокно, металлический корд и т. д.) [628, с. 1009 629, с. 25]. [c.299]

    Исследование разрушения армированных пластиков [618, с. 274] показало, что их прочность в.первую очередь определяется прочностью наполнителя и взаимодействием армирующих волокон с полимерной матрицей. Особое значение имеют дефекты различного вида. Если в идеальном случае разрушение материала обусловливается местным растрескиванием связующего и разрывом волокон, то в реальных системах большую роль играют различные дефекты. [c.299]

    В последние годы армированные пластмассы все шире используются в газо-, нефтедобывающем и перерабатывающем комплексах. Здесь специфическим преимуществом армированных пластиков по сравнению с традиционными металлами (легированные стали, цветные сплавы) являются не только высокая удельная прочность, которая позволяет существенно снизить расходы по доставке и монтажу изделий, но и повышенная химическая стойкость, определяющая увеличение срока службы изделий, в том числе в коррозионной среде и соответственно уменьшающая эксплуатационные затраты, а также возможность улучшения характеристик потоков рабочих сред, транспортируемых в трубопроводах на расстояния в тысячи километров. [c.56]

    Основные недостатки сухого метода следующие сложность полного удаления растворителя из препрега невысокая плотность намотки. Оба недостатка приводят к снижению прочности и монолитности армированного пластика и изделий. Вместе с тем сухой метод обладает и серьезными достоинствами. Это — универсальность по используемым связующим, упрощение варьирования состава связующего, точное дозирование его наноса на наполнитель, отделение процесса пропитки от производства изделия, возможность использования высокопроизводительных методов получения препрега, существенное улучшение санитарных условий производства. [c.66]


    Именно это замечательное качество — высокая усталостная прочность — армированных пластиков сделало их незаменимыми для авиакосмической техники и высокоскоростных наземных транспортных устройств. [c.100]

    В случае армированных пластиков [326] уменьшение усадки приводит к снижению перенапряжений, возникающих на армирующих элементах. Вместе с тем повышение прочности адгезионной связи полимера с наполнителем приводит к возрастанию роли перенапряжений на поверхности раздела, что отрицательно влияет на прочность [327]. Существенно, что максимальные касательные и нормальные напряжения, возникающие, например, в стеклопластиках, зависят от механических характеристик полимера и подложки [328]. [c.180]

    Как видно из изложенного, в принципе при получении армированных пластиков на основе синтетических волокон путем прививки возможно как повышение прочности адгезионной связи в результате образования химических связей между полимерным связующим и волокном, так и одновременно упрочнение армирующего волокна, что позволяет повысить прочностные свойства получаемых композиционных материалов [386]. [c.200]

    Суммируя изложенное, можно считать, что основными параметрами, определяющими прочность армированных пластиков, являются [551]  [c.277]

    Механические свойства коагуляционных дисперсных структур зависят от геометрии частиц, от свойств дисперсной фазы и дисперсионной среды, а также, в особенности, от характера взаимодействия между частицами. Модифицирование поверхности частиц, использование физической адсорбции поверхностно-активных веществ и хемосорбции является эффективным средством изменения механических свойств коагуляционных структур. При этом наибольшее повышение прочности достигается при некотором оптимальном соотношении энергий взаимодействия между частицами дисперсной фазы, молекулами дисперсионной среды и взаимодействия молекул дисперсионной среды с частицами дисперсной фазы. Такое оптимальное соотношение обычно достигается при частичной адсорбционной или химической лиофилизации поверхности дисперсной фазы, причем поверхность частиц принимает мозаичный характер, оказывается состоящей из лиофильных и лиофобных участков [38 Вопросы образования коагуляционных структур и влияния на их прочность адсорбционного и химического модифицирования имеют большое значение для теории и практики использования активных наполнителей в технологии полимеров, а также для разработки оптимальных приемов армирования пластиков волокнистыми дисперсными структурами. [c.23]

    Джо вновь садится за чертежную доску. Первое его желание—удвоить размеры в опасных сечениях кронштейна. Но будет ли этого достаточно Не слишком ли возрастет при этом стоимость Он вновь обращается к справочнику, к тем главам, в которых рассматриваются физические свойства пластмасс. В них он находит такие характеристики различных типов пластмасс, как предел прочности, модуль, теплостойкость, но. данные по ползучести отсутствуют. Джо—очень настойчивый человек, и он берет у Гарри почитать несколько технических журналов. Там он находит, что за последние годы интерес к явлению ползучести пластмасс заметно возрос, причем особенно в связи с работами в области армированных пластиков и труб. [c.174]

    Одно из наиболее важных преимуществ стеклопластиков неред традиционными судостроительными материалами (деревом, сталью, алюминиево-магниевыми сплавами) — высокая уд. прочность (см. Армированные пластики), благодаря чему м. б. уменьшена масса судовых конструкций (табл. 2). [c.483]

    М. с. могут изменяться во времени. Для мн. материалов (монокристаллич., ориентированных и армированных пластиков, в fлoкoн) характерна резкая анизотропия М. с. Хотя М. с. зависят от сил взаимод. между частицами (ионами, атомами, молекулами), составляющими в-во, прямое их сопоставление со структурными характеристиками затруднено из-за дефектов кристаллич. структуры и неоднородностей, присущих реальным в-вам. Так, теоретические значения предела прочности на растяжение, составляющие 0,1 модуля Юнга в-ва, в 2-3 раза превышают достигнутые значения для предельно ориентированных волокон и монокристаллов и в сотни раз-для реальных конструкционных материалов. [c.76]

    Поскольку модули упругости наполнителя и матрицы сильно различаются, для обеспечения монолнтности пластика необходимы полимерные матрицы, значения предельных удлинений которых значительно превышают среднее удлинение композиционного материала при сохранении достаточных значений прочности. Особое значение имеет прочность при сдвиге, так как именно малая прочность при сдвиге между слоями является одним из основных недостатков армированных пластиков. При этом предполагается, что адгезионная прочность превосходит прочность полимера, т. е. разрущения по границе раздела ие происходит. Напряжения и деформации для квадратичной и гексагональной укладки волокон [1, 6, 22—26] являются функцией отнощения модулей наполнителя и матрицы и плотности упаковки волокон. Если считать, что полимерная матрица и наполнитель подчиняются закону Гука, то при объемной доле волокна от 0,6 до 0,75 отнощение предельных удлинений изменяется от 5 до 15 [26]. Если же учитывать нелинейное вязко-упругое поведение полимерной матрицы, то это отнощение еше больше возрастает. Увеличение предельной деформации связующего за счет снижения его модуля упругости и прочности, как это происходит при пластификации, не приводит к повышению прочности пластика, так как прн уменьшении модуля упругости матрицы ее предельное удлинение, необходимое для сохранения монолитности, возрастает. Таким образом идеальное связующее должно обладать большим удлинением при высоких значениях модуля упругости и прочности, особенно при сдвиге. В работе [22] приведен расчет показателей такого идеального связующего, наполненного ( 1 = 0,7) бесщелочным стеклом и высокомодульным стеклом ВМ-1 (табл. 8.1). Ни одно из известных эпоксидных связующих не отвечает полностьк> приведенным в таблице требованиям [22], однако они могут служить отправной точкой для сравнения различных эпоксидных композиций. [c.212]

    Общей особенностью всех волокон, используемых в композитах, является их малый диаметр [2]. Главной причиной использования волокон малого диаметра является способность многих материалов проявлять в таком виде чрезвычайно высокую прочность, что связано с масштабным эффекто.м . Поэтому все современные армированные пластики независимо от их состава содержат волокна диаметром не более 0,1 мм. Кроме того, малый диаметр волокна необходим для получения достаточно большой боковой поверхности, на которой происходит передача нагрузки от сравнительно непрочной и нежесткой матрицы к волокну, так как при большом диаметре сил адгезии недостаточно для передачи нагрузки между волокпамп. Основные с зой-ства наиболее перспективных неорганических волокон приведены в табл. 8.4. Как видно из этой таблицы, стеклянные волокна обладают сравнительно небольшим модулем, в то время как остальные волокна можно считать высокомодульными. В настоящее время на практике применяют стеклянные, борные и углеродные волокна, причем последние обладают наибольшей удельной жесткостью вследствие высокой плотности. [c.213]

    Изделия из армированных пластиков при эксплуатации и )анении всегда подвергаются действию воды или ее паров. При ОМ физико-механические и другие свойства эпоксидных компо-итов часто необратимо снижаются [44—49]. Основной причи-ой этого является ослабление адгезии на границе раздела эпок-идная матрица — волокно [14, 45, 50, 51]. Кроме того, сорбция юды отвержденным связующим, как показано в гл. 3, приводит к изменению его линейных размеров, что сказывается на 1аспределении внутренних напряжений в наполненном пластике 14, 52, 53]. При сорбции воды увеличиваются тангенс угла ди-лектрических потерь и диэлектрическая проницаемость стекло-[ластиков [54], а электрическая прочность, объемное и поверх-юстное электрическое сопротивление уменьшаются [46]. [c.219]

    Как правило, на поверхности волокон, подвергающихся текстильной переработке, присутствуют текстильные замасливатели, в состав которых входят такие вещества, как парафин, канифоль, поверхностно-активные вещества и др. [12, 20]. Этр вещества ухудшают смачивание поверхности волокна, что отрицательно влияет на структуру поверхностного слоя эпоксидны> полимеров [17, 18]. Кроме того, входящие в состав замаслива-телей полярные соединения с различными активными группами могут взаимодействовать с реакционноспособными группами поверхности наполнителя, препятствуя образованию прочных связей полимера с наполнителем. Замасливатели повышают водопоглощение наполнителей [21], и применение, например, стеклотканей без специальной сушки сильно увеличивает пористость материала. Количество этих веществ составляет около I % ог массы волокна, а поскольку высокопрочные армированные пластики содержат до 70% (масс.) волокна, их влияние на связующее может быть значительным, особенно если они сосредоточены в граничном слое около поверхности волокна. Для удаления текстильных замасливателей в некоторых случаях их выжигают при кратковременном нагреве стеклоткани при 350--450 °С, но это приводит к значительному уменьшению прочност) ткани и увеличивает ее стоимость, [c.220]

    Прочность изделий зависит также от того, в каких конструкциях они работают. Полимерные материалы, хорошо зарекомендовавшие себя в одних конструкциях, в других могут не обеспечить достаточной прочности. Так, применяя высокопрочные сорта корда и эластомеров, получают достаточно прочные авто-и авиапокрышки только в том случае, если при их конструировании достигается прочная связь между текстильным материалом корда и эластомером, обеспечивается развитие соответствующих согласующихся деформаций в отдельных элементах конструкции и т. п. Полимерные материалы и волокна, имеющие хорошую прочность при их раздельных испытаниях, могут не обеспечить удовлетворительных показателей, изготовленных из них армированных пластиков. [c.8]

    Армированные, то есть укрепленные, усиленные пластики являются гетерофазными системами, состоящими из волокнистого наполнителя и полимерного связующего. Непрерывные волокна усиливают ряд свойств полимера. Прежде всего армирование повышает прочность, а также придает полимерным материалам некоторые особые качества увеличенную электро- или теплопроводность и теплостойкость, вибродемпфирующие или радиотехнические свойства, размерную стабильность изделий и др. Особенности технологии и свойств армированных пластиков в лаконичной и конкретной форме изложены в [6, с. 204]. [c.56]

    Наполнение пластмасс волокпистымп материа.лами является наиболее эффективным способом иолучеипя жестких (высокомодульных) и высокопрочных материалов. Пластик на основе волокна бора, например, почти не уступает по прочности стали, имея в 4 раза мепьшую плотность. Особенностью армированных материалов является то, что прочность и модуль при сдвиге для них м. б. более че.м на порядок меныве прочности п модуля прп растяжении (см. Армированные пластики). [c.119]

    Реактопласты. Широкое применение в авиастроении армированных пластиков обусловлено прежде всего их высокой уд. прочностью, а также термостойкостью. Первые попытки применить стеклопластик вместо металла в конструкции передней части авиационных реактивных двигателе , детал к-рых подвержены длительному воздействию темп-р от 100 °С до 300 °С, относятся г началу 50-х гг. Первоначальные разработки ограничивались газотурйшными двигателями самолетов вертикального взлета и посадки, для к-рых увеличеш е тяговооруженности (отношение тяги к массе) особенно важно. Согласно расчетам, при замене металла па углеродо- и боропластик тяговооруженность подъемных авиационных двигателей удастся повысить до 4 кн кг (400 кгс кг). Значительны оффект м. б. получен и в маршевых реакт вных двигателях. [c.455]

    Свойства С. в. определяются гл. обр. их химич. составом и характеризуются сочетанием высоких теплостойкости, диэлектрич. свойств, химстойкости, механич. прочности, низкой теплопроводности и малого коэфф. термич. расширения (см. также Армированные пластики). В зависимости от химич. состава и назначения С. в. подразделяют на высокотемиературоустойчивые, высокопрочные, высокомодульные, нолупроводящие, капиллярные (полой структуры) и специальные (напр., волокна с высокой или низкой диэлектрич. проницаемостью). [c.256]

    Для горячего (с подводом тепла) отверждения Э, с. (мол. масса менее 1000) применяют обычно ароматич. ди- и полпамины (л -фенилендиампн, 4,4 -диаминодифе-нилметан, продукты конденсации анилина с формальдегидом, эвтектич. смеси ароматич. полпаминов). Отверждение проводят нри 100—180 °С в течение 16—4 ч соотношение (по массе) Э. с. амин составляет обычно 100 (15—50). Продукты отверждения отличаются повышенной механической прочностью, тепло- и химстойкостью. Такие отвердители применяют главным образом в составе связующих для армированных пластиков и пресспорошков, ограниченно — в заливочных компаундах. [c.499]


Смотреть страницы где упоминается термин Армированные пластики прочность: [c.106]    [c.359]    [c.197]    [c.242]    [c.139]    [c.134]    [c.216]    [c.236]    [c.55]    [c.106]    [c.359]    [c.242]    [c.174]    [c.455]    [c.117]    [c.337]    [c.102]   
Основы переработки пластмасс (1985) -- [ c.302 , c.310 , c.312 ]




ПОИСК





Смотрите так же термины и статьи:

Армированные пластика



© 2025 chem21.info Реклама на сайте