Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорбционная технологическая

Рис. 8.12. Установка абсорбционная. Технологическая схема с КИП н А Рис. 8.12. <a href="/info/28489">Установка абсорбционная</a>. Технологическая схема с КИП н А

    Кроме того, при замене абсорбционных процессов конденсационными не только упрощается схема, но и резко улучшаются санитарные условия труда, уменьшаются случаи производственного травматизма и профессиональной заболеваемости, так как при меньшем давлении в системе сокращаются утечки хладоагента в производственное помещение. Например, на одном из производств органического синтеза с переходом от абсорбционной технологической схемы к конденсационной при температуре —35 °С снизилась заболеваемость обслуживающего персонала [91]. [c.15]

    После того, как в процессе истощения давление на выходе абсорбционной технологической линии упадет до 7 МПа вводится первая очередь ДКС. [c.39]

    Методы расчета технологических параметров абсорбционного процесса, очевидно, должны быть основаны на уравнении массопередачи. При этом специфика процесса отражается в коэффициенте массопередачи, надежное же их определение встречает непреодолимые трудности, особенно при многокомпонентной абсорбции. В связи с этим для инженерной практики в 30-х годах Крейсером — Брауном был разработан метод расчета процесса абсорбции, в основе которого лежат понятия о теоретической тарелке и коэффициентах извлечения компонентов. [c.77]

    МЕТОДИКА ТЕХНОЛОГИЧЕСКОГО РАСЧЕТА АБСОРБЦИОННОЙ ОСУШКИ [c.144]

    Преимущества магнезитового метода — возможность очистки запыленных газов, имеющих высокую температуру, отсутствие отходов и сточных вод, высокая степень извлечения диоксида серы (до 95—96%)). Недостатки — частые забивки насадок в абсорбционных башнях и выход нз строя абсорберов, большой расход энергии на регенерацию поглотителя, сложность технологической схемы, громоздкость оборудования и установки, для функционирования которых требуются значительные капитальные и эксплуатационные расходы. [c.59]

    Для современной нефтепереработки характерна многоступенчатость при производстве продуктов высокого качества. Во многих случаях наряду с основ ными процессами проводят и подготовительные, а также завершающие. К подготовительным технологическим процессам, например относятся обессоли-вание нефтей перед их переработкой, выделение узких по пределам выкипания фракций из дистиллятов широкого фракционного состава гидроочистка бензиновых фракций перед их каталитическим рифор-мингом гидрообессеривание газойлевого сырья, направляемого на каталитический крекинг деасфаль-тизация гудронов гидроочистка керосинового дистиллята перед его абсорбционным разделением и т. д. [c.5]

    Технологическая схема установки приведена на рис. У1-2. Компримированный в две ступени (на схеме не показано) до давления 1,2—2,0 МПа жирный газ поступает в среднюю часть фракционирующего абсорбера 3. Несколькими тарелками выше из резервуарного парка сырьевым насосом подается по одному из трех вводов (в зависимости от содержания пентановых углеводородов). нестабильный бензин. Обычно в абсорбере 3 имеется 40—50 тарелок, распределенных примерно поровну между абсорбционной и десорбционной секциями. Из используемых в абсорберах тарелок наиболее эффективными являются клапанные. Применение секционирования тарелок, уменьшающего эффект поперечного перемешивания, и внедрение прямоточного взаимодействия фаз позволяет в 2-—3 раза повы- [c.59]


    Ректификационные и адсорбционные установки, как правило, представляют собой сложные агрегаты, в которых колонна связана с рядом вспомогательных аппаратов кубами, кипятильниками, различными теплообменниками, сепараторами и др. Иногда эта связь чисто технологическая (через систему трубопроводов), а в некоторых случаях все аппараты конструктивно объединены в один агрегат. Абсорбционные колонны часто устанавливают группами (батареями). Колонны больших размеров обычно устанавливают под открытым небом. Трубопроводы, обслуживающие площадки и вспомогательное оборудование, крепятся к корпусу колонны. На [c.136]

    Анализ функционирования сернокислотных систем и типовых, процессов химической технологии показал, что основную неопределенность в рассматриваемом производстве вносят расход воздуха на входе в систему, концентрация диоксида серы на входе в контактно-абсорбционное отделение, активность катализатора на слоях контактной массы и величины коэффициентов теплопередачи в теплообменниках. Неопределенность этих параметров вызвана как чисто технологическими и физическими явлениями, так и неточностью математических моделей. [c.273]

    Технико-экономические показатели и области применения различных способов очистки газообразных и жидких сред от сернистых соединений, описание технологических схем и оборудования приведены в ряде обзоров. Основное внимание в этих обзорах уделено абсорбционным способам и описанию достижений зарубежных фирм в области газоочистки, в том числе процессов, закупленных для нашей нефтегазовой промышленности. [c.6]

    Из диаграммы распределения удельных весов отказов отдельных единиц оборудования производства в общем числе отказов технологической схемы (рис. 9.2) видно, что большой процент отказов приходится на долю газотурбинной установки ГТТ-3, контактного аппарата, холодильника-конденсатора и абсорбционной колонны. [c.237]

    Используя разработанный комплекс программ для анализа надежности технологической топологии ХТС [87, 102], определили минимальную группу элементов ХТС, характеризуемых низкой надежностью (см. рис. 9.1) ГТТ-3 2, подогреватель хвостовых газов II а абсорбционная колонна 15. Для обеспечения бесперебойности технологических процессов, начиная от входа сырья в систему i и кончая выходом готовой продукционной кислоты S, т. е. для обеспечения связности ППГ системы, необходимо повысить надежность указанных элементов резервированием. [c.239]

    Для абсорбционных аппаратов ХТС основным показателем технологической эффективности является к. п. д. в виде коэффициента извлечения, определяемого уравнением [c.87]

    Для абсорбционно-десорбционной ХТС, структурная схема которой изображена на рис. III-5, структурная блок-схема показана на рис. П1-6. Необходимые для рассмотрения параметры технологических потоков системы G — расход очищаемого газа L — кратность циркуляции раствора абсорбента х — концентрация абсорбента Xy, Xj — концентрации активной части абсорбента в насыщенном U регенерированном растворах у , — концентрации газа на входе в абсорбер и выходе из него gy, ge — потери абсорбента [c.103]

    Основные загрязнения в технологических жидких стоках — органические вещества целевых и побочных продуктов, масляные фракции абсорбционно-десорбционных колонн, твердофазные материалы. [c.259]

    Уменьшение металлоемкости аппаратов, все более повышенные требования в отношении качества продуктов и надежности в работе аппаратов различного технологического назначения требуют постоянного и дальнейшего совершенствования конструкций ректификационных и абсорбционных колонн. [c.130]

Рис. 4. Принципиальная технологическая схема абсорбционной холодильной опреснительной установки (хладагент-вода). Рис. 4. <a href="/info/1480765">Принципиальная технологическая схема</a> <a href="/info/1441847">абсорбционной холодильной</a> <a href="/info/329895">опреснительной установки</a> (хладагент-вода).
Рис. 2.1. Принципиальная технологическая схема установки абсорбционной Рис. 2.1. <a href="/info/1480765">Принципиальная технологическая схема</a> установки абсорбционной
    Рпс. 2. Технологическая схе та абсорбционного разделения попутного газа  [c.26]

    Технологическая схема абсорбционного разделения попутного газа с применением таких абсорбционно-отпарных колонн изображена на рис. 2. Исходный газ сжимают трехступенчатым компрессором / до 1,2—2 МПа в зависимости от содержания высших углеводородов. Затем он поступает в среднюю часть абсорбционно-от-парной колонны 2, орошаемой предварительно охлажденным абсорбентом (им обычно служат более тяжелые фракции бензина или лигроин). Верхняя часть колонны работает как абсорбер, причем из газа поглощаются полностью углеводороды С5 и высшие, около 95% бутанов и 70—80% пропана. Непоглощенные газы, состоящие в основном из метана и этана, можно использовать в качестве топливного газа или выделять из них метан, этан и пропан одним из рассмотренных выше методов. Процесс абсорбции [c.26]


    Во всех технологических аппаратах, например, в теплообменниках, насадочных абсорбционных колоннах и химических реакторах, всегда принимают меры против струйного течения и образования застойных зон, чтобы избежать ухудшения характеристик аппаратов. Циркуляция жидкости также обычно нежелательна, кроме тех случаев, когда в реакторах протекают сложные реакции, особенно автокаталитические и автотермические. [c.238]

    Изм. Лист Н докум. Подпись Дата Установка абсорбционная Технологическая схема с КИП и А - — [c.233]

    Если величина 2ДЯабс>АЯок, то значение а>1. Это значит, что технология с окислением НгЗ в жидкой фазе требует меньших энергетических затрат, чем абсорбционная технологическая схема с последующим окислением Н З в газовой фазе. [c.74]

    Типичный состав продуктов разделения газа пиролиза абсорбционно-ректификационным методом приведен в табл. У.19, параметры технологического режима кол 1 н " ияедены ниже  [c.295]

    Важнейшим направлением повышения технико-экономической эффективности процессов перегонки и ректификации нефтяных смесей, как это следует из всего материала книги, является применение оптимальных технологических схем разделения, в том числе новых схем со связанными материальными и тепловыми потоками и с тепловыми (насосами использование сложных ректификационных и абсорбционных аппафатов с высокоэффективными конструкциями контактных устройств. [c.344]

    Принципиальная технологическая схема процессов химической абсорбции не отличается от обычной схемы абсорбционного процесса. Однар(0 в конкретных условиях в зависимости от количества кислых газов в очищаемом газе, наличия примесей, при особых требованиях к степени очистки, к качеству кислого газа, и других факторов технологические схемы могут сун ест-венно отличаться. Так, например, при использовании аминных процессов при очистке газов газоконденсатных месторождений под высоким давлением и с высокой концентрацией кислых компонентов широко используется схема с разветвленными потоками абсорбента (рис. 53), позволяющая сократить капитальные вложения и в некоторой степени эксплуатационные затраты. Высокая концентрация кислых комионентов требует больших объемов циркуляции поглотительного раствора. Это не только вызывает рост энергетических затрат на перекачку и регенерацию абсорбента, но и требует больших объемов массообменных аппаратов, т. е. увеличения капитальнрлх вложений. Вместе с тем из практики известно, что в силу высоких скоростей реакций аминов с кислыми газами основная очистка газа происходит на первых по ходу очищаемого газа пяти—десяти реальных таре, 1-ках абсорбера на последующих тарелках идет тонкая доочистка. Этот факт послужил основанием для подачи основного количества грубо регенерированного абсорбента в середину абсорбера, а в верхнюю часть абсорбера — меньшей части глубоко-регенерированного абсорбента. Это позволило использовать абсорбер переменного сечения (нижняя часть большего диаметра, верхняя — меньшего), что снизило металлозатраты, а также сократить затраты энергии за счет глубокой регенерации только части абсорбента. [c.171]

    В этой же секции осуществляются и другие технологические операции охлаждение и отмывка от катализаторной пыли поступающего из реактора в ректификационную колонну аерегретого газо-парового иотока, нагрев исходного сырья установки горячими продуктами ректификации и во многих случаях отстой тяжелого каталитического газойля от катализаторной пылв и отпаривание насыщенного поглотителя абсорбционной установки. [c.175]

    Рассмотрим многостадийный процесс, схема которого изображена на рис. 1-48. С примерами этих процессов можно встретиться прп анализе работы исадиабатической ректификационной колонны, технологического участка химического производства, последовательности абсорбционных аппаратов и т. д. Каждая стадия такого процесса имеет по два входа и выхода, которые связаны между собой системой соотношений, описывающих процессы, происходящие на стадии  [c.303]

    Выделение С4-фракции из контактных газов реакции осуществляется абсорбционным методом с предварительным комприми-рованием контактного газа. Существенный интерес представляет бескомпрессорная схема выделения углеводородной фракции из контактного газа. В этом случае реакцию проводят при повышенном давлении. На рисунке приведена недавно опубликованная принципиальная технологическая схема процесса окислительного дегидрирования н-бутенов, осуществленная на заводе фирмы Филлипс в г. Боргере (США) [28]. Воздух компримируют и смешивают с водяным паром. Смесь нагревают в печи, смешивают с бутеновым сырьем и пропускают над катализатором окислительного дегидрирования, помещенным в реактор непрерывного действия. Тепло выходящего из реактора потока используется в котле-утилизаторе для производства технологического пара. Затем поток подвергается закалочному и обычному охлаждению и промывается от кислородсодержащих соединений. Фракцию С4 выделяют масляной абсорбцией и после отпарки ее из масла в десор-бере подают на конечную стадию очистки. Непрореагировавшие бутены возвращают в реактор. Небольшое количество кислород-содержащих соединений, имеющихся в промывных водах, отпаривают и сжигают в печи подогрева пара и воздуха. [c.691]

    В книге рассмотрены основы процессов ректификации и абсорбции, технологические схемы ректификационных и абсорбционных аппаратов. В 3-м издании (2-е изд. — 1971 г.) даны новейшие методы расчета этих процессов, в том числе на ЭВМ. Материал дополнен конкретными примерами расчета из практики нефтегазопереработ-ки. [c.263]

    При небольших тепловых нагрузках, существенной разбросанности объектов охлаждения, а также при непосредственном включении элементов холодильного цикла в схему основного производства, например, при газоразделении, целесообразно использование локальной системы получения холода с непосредственным охлаждением объектов рабочим телом холодильной машины. При этом несколько снижаются энергетические затраты. В холодильных установках, применяемых в химической промышленности, используют почти все типы холодильных машин, но [/аибольшее распространение получили паровые компрессионные и абсорбционные. Как показывает техникоэкономический анализ [1, 8, 11], применение абсорбционных холодильных машин обосновано при использовании вторичных энергетических ресурсов в виде дымовых и отработанных газов, факельных сбросов газа, продуктов технологического производства, отработанного пара низких параметров. В ряде производств экономически выгодно комплексное использование машин обоих типов при создании энерготехнологических схем. [c.173]

    Интерэктность ХТС —это способность элементов, образующих систему, взаимодействовать между собой в процессе функционирования системы. Для каждого элемента ХТС взаимодействие между параметрами его входных и выходных потоков (или входных и выходных переменных элемента) обусловлено физикохимическими условиями протекания технологического процесса. Например, для химического реактора существует взаимодействие или взаимовлияние состава входного потока и температуры выходного потока для абсорбционного аппарата—взаимодействие рас- [c.40]

    При аварийных ситуациях приходит в действие система защитных блокировок, прекращаются подача аммиака в смеситель, воды на орошение абсорбционной колонны, природного газа в установку каталитической очистки и газотурбинная установка (ГТУ) переводится на энергетический режим. Эти операции исключают возможность образования взрывоопасных смесей и выбросов вредных газов в атмосферу. Технологическое оборудование при этом временно консервируется — сохраняется рабочее давление в аппаратах, предотвращается провал жидкости в абсорбционной колонне в результате продувки постоянным потоком воздуха из компрессора ГТУ. При необходимости технологическая схема может быть полностью отключена от ГТУ для проведения восстановительного ре-амонта. [c.216]

    Пример [25]. Требуется разработать формальную адаптивную мо-дел1, абсорбционного отделения в производстве слабой азотной кислоты в статическом режиме. Основным технологическим аппаратом отделения является тарельчатая абсорбционная колонна, где происходит абсорбция окислов азота. [c.98]

    Технологические особенности процесса позволяют классифицировать основные переменные следующим образом а) к вектору варьируемых переменных x=(xi, xj, хз) отнесем расход окиси азота на выходе из контактного отделения Ii = (Sj q, расход кислорода на входе в абсорбционное отделение j = Gq, расход парового конденсата на абсорбционную колонну x3 = Gjjj б) к наблюдаемому вектору выходных переменных у= (уу, у , Уз) отнесем концентрацию продукционной кислоты = , концентрацию [c.98]

    На рис. 172 показана припципиальпая технологическая схема процесса абсорбционной очистки природпьтх газов от HoS и СО. с помощью аминов. В этом процессе HjS извлекается из газа за счет химической реакции, которая становится обратимой при нагревании, а Oj удаляется в основном за счет физической абсорбции раствором. Схема процесса подобна схеме гликолевой осушки газа, и даже многие проблемы, возникающие при сероочистке (папример, вспенивание, коррозия), аналогичны проблемам гликолевой осушки. Однако эксплуатировать установки сероочистки гораздо труднее, чем установки гликолевой осушки. [c.268]

    Вместо турбокомпрессора при опреснении с использованием воды в качестЕе хладагента можно применять абсорбционную холодильную установку, что особенно целесообразно при наличии дешевого тепла для обогрева генератора. Принципиальная технологическая схема такой установки приведена на рис. 4 (16]. Пары воды, поступающие из испарителя 4, поглощаются в абсорбере 7 холодильной установки. Разбавленный раствор из абсорбера через регенеративный теплообменник 9 поступает в генератор 8, который обогревается глухим водяным паром. [c.9]

    Наиболее часто применяется абсорбционно-десорбциониый способ, упрощенная технологическая схема которого приведена на рис. 9. При абсорбционно-десорбционно.м способе один компонент [c.19]

    Элементы расчета абсорбционных и хемосорбциониых процессов и типы применяемых реакторов рассмотрены в ч. I, гл. VI. Основные технологические показатели абсорбционной очистки степень очистки (КПД) г) и коэффициент массопередачи А определяются растворимостью газа, гидродинамическим режимом в реакторе Т, Р,ю) и другими факторами, в частности равновесием и скоростью реакции при хемосорбции. При протекании реакции в жидкой фазе величина к выше, чем при физической абсорбции. При хемосорбции резко меняются равновесные соотношения, в частности влияние равновесия на движущую силу абсорбции. В предельном случае для необратимых реакций в жидкой фазе (нейтрализация) образующееся соединение и еет практически нулевое давление паров над раствором. Однако такие хемосорбционные процессы нецикличны (поглотительный раствор не может быть вновь возвращен на очистку) и целесообразны лишь при возможности использования полученных растворов иным путем. Большинство хемосорбциониых процессов, применяемых в промышленности, обратимы и экзотермичны, поэтому при повышении температуры раствора новое соединение разлагается с выделением исходных компонентов. Этот прием положен в основу регенерации хемосорбентов в циклической схеме, тем более, что их химическая емкость мало зависит от давления. Хемосорбционные процессы особенно целесообразны таким образом для тонкой очистки газов, содержащих сравнительно малые концентрации примесей. [c.234]


Смотреть страницы где упоминается термин Абсорбционная технологическая: [c.285]    [c.81]    [c.501]    [c.216]    [c.277]    [c.32]    [c.255]    [c.188]    [c.241]   
Основные процессы и аппараты химической технологии (1983) -- [ c.218 , c.219 ]




ПОИСК







© 2025 chem21.info Реклама на сайте