Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия связи, чистая

    Высвобождение из комплекса при его дроблении некоторой части входящих В него молекул также подтверждает физическую природу комплексообразования. Некоторые исследователи [5, 15] считают, что взаимодействие карбамида с н-алканами аналогично взаимодействию их с цеолитами. Однако точка зрения на структуру комплекса как на физическое явление не подтверждается величиной энергии связи углеводорода с карбамидом, приходящейся на каждую группу СН2. Установлено [I, 15], что она равна 6,7 - 11,76 кДж, в то время как силы Ван-дер-Ваальса равны всего 4,19 кДж на каждую СН2. Другие исследователи [25, 2б] относят кристаллические комплексы углеводородов и их производных с карбамидом к чисто химическим соединениям, поскольку реакция комплексообразования подчиняется общим законам течения химических реакций, в частности закону действующих масс. Изменение условий комплексообразования оказывает влияние на равновесие, скорость образования комплекса, эффективность разделения и на другие пока- [c.36]


    Это позволяет связать чисто термодинамический параметр сопряженного процесса — химическое сродство — с важнейшей кинетической характеристикой — скоростью реакции. При этом отношение можно рассматривать как энергетическую эффективность сопряжения, показывающую, какая доля энергии сопрягающей реакции вкладывается в термодинамически запрещенную сопряженную. [c.302]

    Если жидкая среда — чистая вода, для всех металлов картина в качественном отношении будет однозначной металл заряжается отрицательно, прилегающий слой жидкости — положительно. Однако количественно для разных металлов будут наблюдаться существенные различия, что объясняется не только неодинаковой энергией связи катионов этих металлов в кристаллической решетке, но и неодинаковой гидратируемостью этих катионов. [c.225]

    Энтальпийный фактор обусловлен энергией связи между лигандами и комплексообразователем. Если эта связь близка к чисто ионной, то ее энергия растет с увеличением заряда иона и с уменьшением радиусов взаимодействующих частиц. Например, ион АР образует более устойчивый комплекс с небольшими ионами F, чем с большими ионами СГ. Большой однозарядный ион СЮ проявляет очень малую склонность к комплексообразованию с ионами металлов. [c.278]

    Первый количественный подход к понятию электроотрицатель ности был чисто эмпирическим и основывался на аддитивности нормальных ковалентных связей . Энергию чисто ковалентной связи между двумя атомами А—В можно предположить равной среднеарифметическому из энергии связей между А—А и В—В. Следовательно, если связь А—В нормальная ковалентная, то [c.122]

    Теоретические расчеты химической связи показывают, что энергия смешанной ионно-ковалентной связи больше, чем энергия чисто ковалентной или чисто ионной связей. Эту дополнительную энергию связи называют ионно-ковалентной резонансной энергией и обозначают Д [см. ур. (4-7)]. Очевидно, если А О, связь в некоторой мере будет ионной. Так как ионный характер связи зависит от различия в электроотрицательности связанных атомов. [c.122]

    Средняя энергия связи ДА1—С1) = 1269 3 = 423 кДж/моль. Как видно, она отличается от значений энергий диссоциации связей (А1—С1) во всех трех случаях. Тем не менее понятие средних энергий связей используется как понятие чисто эмпирическое, помогающее приближенно рассчитать энергии диссоциации на основании принципа аддитивности как суммы средних энергий связей (табл. 20). [c.180]


    Если жидкая среда — чистая вода, то качественно для всех металлов картина однозначная металл заряжается отрицательно, а прилежащий слой жидкости — положительно. Однако количественно для разных металлов будут наблюдаться существенные различия. Это является результатом как неодинаковой энергии связи катионов отдельных металлов в их кристаллических решетках, так и не одинаковой гидратируемости этих катионов, Здесь большую роль играют эффективные радиусы последних. [c.317]

    Предлагалась даже формула, допускающая в качестве полу-эмпирической закономерности полную пропорциональность между обменным интегралом Н 2 и интегралом перекрывания 512. Для вычисления интегралов перекрывания нужно знать, конечно, отдельные атомные функции. Надежность оценок энергии связи поэтому зависит от того, насколько удачным оказался выбор атомной функции. Обычно пользуются функциями, предложенными Слейтером. Эти функции не всегда дают достаточно точные результаты, но тем не менее расчеты, проведенные с их помощью Милликеном, представляют значительный интерес. Так было найдено, что интегралы перекрывания для гибридных орбиталей (см. ниже) больше, чем для чистых. Интегралы перекрывания изменяются в пределах от нуля до единицы. У молекулы На интеграл перекрывания составляет 0,75, у бора (В—В) для связей типа 5—5 — 0,5, для связей типа ра—ра и рп—рл — около 0,3, у углерода для двойной связи (С = С) имеем тип 55 0,44 тип ра—ра 0,32 и тип рл—рп 0,27. Благодаря этим данным можно представить себе долю участия и образования связей различных электронов, а не только тех, которые химики привыкли называть валентными и на которых они сосредоточивают внимание, когда речь идет об образовании соединений. [c.106]

    Рентгеноструктурными, электронографическими и другими новыми методами исследования структуры углерода установлено, что чистый углерод кристаллизуется с образованием кубической (алмазы) и гексагональной (графит) форм. В узлах кристаллической решетки алмаза каждый атом углерода направляет свои четыре о-связи к четырем соседним атомам. Расстояние между атомами в решетке алмаза такое же, как между атомами углерода в органических соединениях— 1,54 А. Энергия связи между атомами углерода весьма высока, что обусловливает высокую твердость алмаза, малую его летучесть и большую химическую стойкость. Теплота сгорания алмаза несколько выше, чем графита. В связи с этим при нагреве алмаза без доступа воздуха он переходит в термодинамически более устойчивое состояние — в графит. В кристалле графита (рис. 12) атомы углерода в базисных плоскостях расположены в углах шестиугольников, на расстоянии 1,42 А, т. е. на таком л<е расстоянии, как и в молекулах бензола. Прочность связей углерода в базисной плоскости кристалла графита примерно в шесть раз выше, чем в атомах углерода, расположенных на двух плоскостях, находяш,ихся на расстоянии 3,345 А. Относительно большое расстояние между базисными плоскостями обусловливает специфические физико-химические и механические свойства графита. Значительное расстояние между базисными плоскостями приводит к тому, что между ними могут внедряться атомы других элементов меньших размеров. [c.50]

    Имеются и другие вклады в энергию связи ионных кристаллов, которые следует учитывать при точных расчетах, однако в первом приближении можно считать, что сила притяжения имеет чисто электростатическую природу и что она уравновешивается [c.220]

    Полученый результат свидетельствует о существенном влиянии изменений электростатического поля лиганда при замещении на прочность связи металл - лиганд Физический смысл такой линейной зависимости достаточно ясен Поскольку в образовавшемся комплексе металл несет остаточный положительный заряд (в рассмотренных случаях заряд на атоме магния в комплексе около +1,1е), то его чисто электростатическое взаимодействие с удаленными полярными группировками вносит свой вклад в энергию связи и определяет разницу в энергиях связи металл -лиганд для лигандов-аналогов В чистом виде такое электростатическое взаимодействие проявляется на больших расстояниях между катионом и лигандом, когда еще нет электронного обмена [c.186]

    Начиная с 1920 г., когда Латимер и Родебуш предложили концепцию водородной связи, ведутся горячие споры представляет ли собой водородная связь чисто электростатическое взаимодействие или она носит частично ковалентный характер. То, что сила водородной связи увеличивается с ростом электроотрицательности атомов, образующих водородную связь, доказывает, что электростатическая энергия представляет важную часть энергии водородной связи. [c.85]

    Как известно, для каждого типа молекул воды в области 3100—3800 см- должны наблюдаться по крайней мере три полосы поглощения (симметричные, асимметричные валентные колебания и обертон деформационных колебаний). Сдвиг частот валентных симметричных колебаний и валентных асимметричных колебаний ОН-групп молекул воды в растворах относительно соответствующих частот полос поглощения в спектре водяного пара зависит от величины энергии связи между молекулами воды и молекулами растворителя. Разность между частотами симметричных и асимметричных валентных колебаний определяется симметрией образующихся комплексов. В чистой воде, находящейся в жидком состоянии, все ОН-группы молекул воды приблизительно равноценны, разность частот симметричных и асимметричных колебаний близка к 100 см , но так как полосы имеют большую полуширину, то структура суммарной полосы проявляется весьма слабо. Однако даже при небольшой асимметрии в энергиях связи ОН-групп молекулы воды с окружением разность частот симметричных и асимметричных колебаний заметно увеличивается, и структура суммарной полосы фиксируется достаточно четко. При увеличении энергии связи молекул воды с окружением происходит не только сдвиг полос, но и изменение их относительной интенсивности и полуширины. [c.59]


    Можно ли хотя бы мысленно представить конструкцию протонного насоса и ориентированной АТРазы, приводимой в действие потоком электронов Мы рассмотрим только одну чисто гипотетическую модель. Чтобы нуклеофил V мог образовать богатую энергией связь Р прямой атакой атома фосфора Р , необходимо удалить ион ОН . При pH 7 вероятность такой реакции очень мала, но она может стать заметной при более низких pH. Таким образом, мы можем себе представить, что функция ориентированной АТРазы состоит в том, чтобы захватывать протон и специфически удерживать его вблизи атома кислорода, который должен быть элиминирован [уравнение (10-20)]. А как можно направить протон в точно нужное место Вероятно, он мог бы проходить по каналу в мембране, который и доставляет его в требуемый участок. Пожалуй, еще легче себе представить, что протон [c.420]

    Коссель и Магнус рассматривали взаимодействие частиц в комплексах как чисто электростатическое, происходящее по закону Кулона, что дало им, возможность вычислить энергию связи лигандов с комплексообразователем. В этих расчетах комплексообразователь и лиганды принимали за недеформируемые заряженные сферы. Для комплексов, соответствующих такому предположению, вычисления дают правильный порядок величины, энергии связи. Для комплексов, в которых лигандами являются полярные молекулы, результаты раечета менее правильны оии могут быть несколько уточнены, если учесть эффект поляризации. [c.120]

    Донорные свойства непредельной связи и акцепторные свой-ства атакующей положительной частицы способствуют образованию я-комплексов, или комплексов с переносом заряда, что приводит к повышению дипольного момента либо появлению новых полос, определяемых УФ-спектроскопией. я-Комплекс способен распадаться на исходные компоненты, так как энергия связи в нем составляет лишь несколько кДж/моль и характеризуется значительно большими межатомными расстояниями, чем в а-комплексе. Образование комплексов зависит от наличия в реакционной смеси промоторов типа НС1 и Н2О, поскольку чистые олефины при контакте с безводными металлгалогенидами [c.64]

    Другая отличительная особенность процессов адсорбции на металлах группы платины по сравнению с ртутным электродом связана уже не с механизмом адсорбции, а с характером распределения адсорбированных частиц по энергиям связи. Если на ртути идеально соблюдается энергетическая равноценность адсорбционных мест, то в случае твердых электродов нельзя не принимать во внимание большую вероятность нарушения такой однородности. Прежде всего могут отличаться по энергиям адсорбции различные грани. Значения энергий адсорбции на межкристал-литных границах, в узких шелях, микропорах, в местах включений посторонних частиц в поверхностный слой могут быть сун1е-ствеино иными по сравнению со значениями энергий адсорбции на чистых гранях. Особыми местами являются также вершины и ребра кристаллитов, выходы дислокаций и другие дефекты поверхности. Следует учитывать, что часто могут иметь место не [c.87]

    Если считать, как это делали Коссель и Магнус, взаимодействие частиц в комплексах чисто электростатическим, происходящим поза-кону Кулона, то может быть подсчитана энергия связи лигандов с комплексообразователем. В этих расчетах комплексообразователь и лиганды рассматривались как недеформируемые заряженные сферы. Читатели легко могут провести такие вычисления для ионов (тетраэдрическое строение), 1А1Рв) (октаэдрическое расположение лигандов), 1А 12) (линейная структура), воспользовавшись величинами соответствующих ионных радиусов. [c.216]

    Простая электростатическая теория была впервые применена для объяснения комплексов металлов Ван-Аркелом и Де Буром" II Гэрриком примерно в 1930 г. В своей модели связи они исполь зовали хорошо известные уравнения потенциальной энергии классической электростатики. Этот подход требовал знания величин зарядов и размеров центральных ионов, а также величин зарядов, дипольных моментов, поляризуемости и размеров лигандов. Лег ко показать, что если принять чисто электростатическую модель, то нужно ожидать для комплексов с одинаковыми лигандами н любым координационным числом правильной конфигурации Так, для комплексов с наиболее распространенными координационными числами 2, 4 и 6 конфигурации должны были бы быть соответственно линейной, тетраэдрической и октаэдрической, так как они обеспечивают минимальное отталкивание между лигандами. Для некоторых комплексов, используя эту простую мо дель, можно вычислить энергии связи, которые хорошо согласуют ся с экспериментально найденными величинами .  [c.256]

    Потенциометрический метод. Для решения ряда проблем теории гетерогенного катализа первостепенное значение приобретаег определение концентраций реагирующих веществ на поверхности катализатора непосредственно в ходе реакции. Изменение соотношения концентраций реагирующих веществ на поверхности определяет не только влияние чисто концентрационных факторов на скорость реакции, но и интервал энергий связи, который реализуется в заданной реакции. Это означает, что оптимальные энергии связи реагирующих атомо (и, в частности, водорода в реакциях гидрирования) с поверхностью заданного катализатора должны изменяться с изменением природы проводимой реакции. Поэтому при расчете энергетического соответствия в катализе необходимо использовать не единые усредненные для всей поверхности энергии связи реагирующих атомов с поверхностью катализатора, а индивидуальные энергии связи, определяемые природой проводимой реакции. [c.194]

    В наиболее чистом виде энергия связи проявляется в двухатомных молекулах с единичной связью. Для таких молекул она численно равна их энергии образования из атомов, но противоположна по знаку (знак совпадает с энергией разрыва связи). Для характеристики многоатомных молекул с одним типом заместителя, например СН , З , РС1з, пользуются понятием средней энергии связи (см. гл. 1). Значения длины и энергии некоторых связей представлены в табл. 8. [c.99]

    Большая часть контактов между гидросиликатами в третьей стадии осуществляется путем конденсации через раствор или через соприкасающиеся силанольные группы различных частиц низко-конденсированных гидросиликатов с образованием химических связей, как это уже обсуждалось для чистого 3S. Конденсационнокристаллизационная структура, развивающаяся к концу третьей стадии структурообразования, вероятно, не является пронизывающей весь объем образца, но разделяет его на микрообъемы негомогенного состава с различными типами и энергией связи между агрегатными блоками и отдельными кристаллами, выступающими в качестве структурообразующих элементов. Нарастание прочности в четвертом периоде происходит в связи с накоплением и срастанием субмикрокристаллических гелевидных гидросиликатов, уплотнения материала и утоншения пленок воды. [c.108]

    При самодиффузии в чистом металле D[=D2=D 2= =-Осамод. Какими характеристиками определяются величины коэффициентов диффузии При блуждании частица должна оторваться от своего узла, нарушить связи с соседними атомами. Поэтому можно ожидать существование связи между энергией активации самодиффузии Е и теплотой сублимации о, которая является мерой энергии связи в решетке. Опыт действительно показывает, что Efa=k, где k — постоянная, зависящая от природы кристаллической решетки. Так, для гранецеитрирован-ных решеток k=0,67. Таким образом, для совершения блуждания надо затратить 2/3 энергии связи. Следовательно, в решетках с большой энергией связи диффузия будет происходить медленнее. В этом проявляется влияние на диффузионную иодвижность так называемого термодинамического фактора. Влияние этого фактора на скорость диффузии проявляется также и в том, что в реальных растворах ноток диффузии не будет проиорцио-иален градиенту концентрации. При рассмотрении связи коэффициента диффузии с подвижностью мы приняли для парциальной свободной энергии компонента iui выражение, справедливое для разбавленных растворов. [c.203]

    Образование радикала Вг ири зарождении цепи иронсходит в результате взаимодействия кислорода или, что более эффективно, нерекисного радикала с бромистым водородом. С чисто энергетической точки зрения образование СбНзСООН и Вг гораздо выгоднее, чем образование СеНзСООВг и Н , поскольку энергия связи О [c.437]

    Для более сложных молекул многоэлектронную волновую ф-цию представляют в виде антисимметризированного в соответствии с принципом Паули произведения всех двухэлектронных ф-ций типа Хдв(1,2) и ф-ций, описывающих состояние электронов внутр. оболочек, неподеленных электронных пар и неспаренных электронов, не занятых в двухцентровых связях. Отвечающее этой ф-ции распределение валентных штрихов, соединяющих атомы в молекуле, наз. валентной схемой. Такой подход наз. приближением идеального спаривания или приближением локализованных электронных пар. Электроны соотносят отдельным атомам и в соответствии с осн. идеей приближения Гайтлера-Лондона их состояния описывают атомными орбиталями. Согласно вариационному принципу (см. Вариационный метод), приближенную волновую ф-цию выбирают так, чтобы она давала миним. электронную энергию системы или, соответственно, наиб, значение энергии связи. Это условие, вообще говоря, достигается при наиб, перекрывании орбиталей, принадлежащих одной связи. Тем самым В. с. м. дает обоснование критерия макс. перекрывания орбиталей в теории направленных валентностей. Лучшему перекрыванию орбиталей, отвечающих данной валентной связи, способствует гибридизация атомных орбиталей, т.е. участие в связи не чистых 5-, р-или -орбиталей, а их линейных комбинаций, локализованных вдоль направлений хим. связей, образуемых данным атомом. [c.345]

    В р-циях с участием Н наиб, активны металлы, на пов-сти к-рых происходит его хемосорбция с диссоциацией и низкой энергией связи атомарного водорода. Сплавы u-Ni, Au-Pt, Ag-Pd менее активны, чем чистые металлы VIII группы. На чистых металлах 16 группы не адсорбируется и не активируется. [c.540]

    Л. Полинг предложил (1932) для количеств, характеристики Э. использовать термохим. данные об энергии связей А—А, В —В и А—В - соотв. Е , вв и Энергия гипотетической чисто ковалентной связи А —В ( о,) принимается равной среднеарифметич. или среднегеометрич. значению величин Еда и Евв- Если Э. атомов А и В различны, то связь А — В престает бьгть чисто ковалентной и энергия связи Едв станет больше Е на величину Ддв  [c.452]

    Метод РФЭС пригоден не только для качественного и количественного элементного анализа поверхности, но и для получения информации о химических связях, поскольку точные значения Есв зависят от химического окружения возбужденного атома. На рис. 10.1-4 изображены спектры 2р-электронов кремния в чистом кремнии и оксиде кремния. Влияние химического окружения четко прослеживается энергия связи 2р-электронов 81 в оксиде кремния сдвинута относительно той же энергии связи в чистом кремнии на 4,25 эВ в сторону ббльших энергий, что свидетельствует о меньшем экранировании положительного заряда ядра 81 в 8102 облаком валентных электронов по сравнению с чистым кремнием, что связано с более низкой электронной плотностью у ядра 81 в 810г по сравнению с чистым кремнием. На основании этого так называемого химического сдвига можно определить степень окисления или стехиометрию атомов в молекуле. Однако обычно химические сдвиги достаточно малы (менее 1 эВ), поэтому для разрешения перекрывающихся пиков, соответствующих различным степеням окисления, необходима процедура деконволюции. Используя деконволюцию, можно оценить химические сдвиги величиной до 0,1 эВ. [c.319]


Смотреть страницы где упоминается термин Энергия связи, чистая: [c.113]    [c.348]    [c.108]    [c.50]    [c.88]    [c.303]    [c.273]    [c.283]    [c.303]    [c.118]    [c.130]    [c.149]    [c.48]    [c.119]    [c.123]    [c.59]    [c.173]   
Неорганическая химия Том 1 (1970) -- [ c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Связь связь с энергией

Связь энергия Энергия связи

Энергия связи



© 2025 chem21.info Реклама на сайте