Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гудрон гидроочистка

Рис. 6. Продукты, получаемые на установках АВТ, и пути их использования г / — вторичная перегонка, гидроформинг 2 — пиролиз, производство ароматических углеводородов 3 — депарафиннзация, компаундирование 4 — компаундирование керосина, гидроочистка 5 — депарафиннзация, пиролиз 6 — каталитический крекинг 7. 8, 9, 10 — селективные очистки дистиллятных масел депарафиннзация карбамидом, адсорбционная очистка //—I3 — производство кокса, котельного топлива, сортовых мазутов /4 — переработка газа полученне сырья для нефтехимических производств 15—17 — деасфальтизация, производство кокса, термический крекинг. /—V — компоненты светлых нефтепродуктов (°С) н. к.— 62. 62—85, 85—105, 105—120, 120—140, 140—240, 240—300, 300—350 V/— мазут, >350 V//— газ V///— гудрон, >500 /Х—Х///— вакуумные фракции ("С) 350—400, 400—420, 420—490 (500) >490 (500). Рис. 6. Продукты, получаемые на установках АВТ, и пути их использования г / — <a href="/info/309778">вторичная перегонка</a>, гидроформинг 2 — пиролиз, <a href="/info/404901">производство ароматических углеводородов</a> 3 — депарафиннзация, компаундирование 4 — компаундирование керосина, гидроочистка 5 — депарафиннзация, пиролиз 6 — <a href="/info/25178">каталитический крекинг</a> 7. 8, 9, 10 — <a href="/info/63444">селективные очистки</a> дистиллятных масел депарафиннзация карбамидом, <a href="/info/310106">адсорбционная очистка</a> //—I3 — <a href="/info/652480">производство кокса</a>, <a href="/info/80857">котельного топлива</a>, сортовых мазутов /4 — <a href="/info/1619770">переработка газа полученне</a> сырья для <a href="/info/1469975">нефтехимических производств</a> 15—17 — деасфальтизация, <a href="/info/652480">производство кокса</a>, <a href="/info/66231">термический крекинг</a>. /—V — <a href="/info/1455545">компоненты светлых нефтепродуктов</a> (°С) н. к.— 62. 62—85, 85—105, 105—120, 120—140, 140—240, 240—300, 300—350 V/— мазут, >350 V//— газ V///— гудрон, >500 /Х—Х///— вакуумные фракции ("С) 350—400, 400—420, 420—490 (500) >490 (500).

    За последние годы в технологию производства масел все больше внедряются процессы гидроочистки взамен селективной очистки и обработки отбеливающими глинами. Таким способом получают дистиллятные масла (легкие и средние индустриальные, автотракторные и др.). Остаточные масла (авиационные, цилиндровые) выделяют из гудрона путем его деасфальтизации жидким пропаном. При этом образуются деасфальтизат и асфальт. Деасфальтизат подвергают дальнейшей обработке, подобно масляным дистиллятам, а асфальт перерабатывают в битум или кокс. [c.152]

    Для современной нефтепереработки характерна многоступенчатость при производстве продуктов высокого качества. Во многих случаях наряду с основ ными процессами проводят и подготовительные, а также завершающие. К подготовительным технологическим процессам, например относятся обессоли-вание нефтей перед их переработкой, выделение узких по пределам выкипания фракций из дистиллятов широкого фракционного состава гидроочистка бензиновых фракций перед их каталитическим рифор-мингом гидрообессеривание газойлевого сырья, направляемого на каталитический крекинг деасфаль-тизация гудронов гидроочистка керосинового дистиллята перед его абсорбционным разделением и т. д. [c.5]

    Процесс гидрокрекингу предназначен в основном для получения малосернистых топливных дистиллятов из различного сырья. Обычно гидрокрекингу подвергают вакуумные и атмосферные газойли, газойли термического и каталитического крекинга, деасфальтизаты и реже мазуты и гудроны с целью производства автомобильных бензинов, реактивных и дизельных топлив, сырья для нефтехимического синтеза, а иногда и сжиженных углеводородных газов (из бензиновых фракций). Водорода при гидрокрекинге расходуется значительно больше, чем при гидроочистке тех же видов сырья. [c.47]

Таблица 12. Выход и свойства нефтяны х масел глубокой гидроочистки деасфальтизата, полученного из гудрона кувейтской нефти Таблица 12. Выход и <a href="/info/62973">свойства нефтяны</a> х масел <a href="/info/730204">глубокой гидроочистки</a> деасфальтизата, полученного из гудрона кувейтской нефти
    Наиболее простой вариант получения котельных топлив с пониженным содержанием серы - вакуумная перегонка мазута с получением газойля и гудрона. Вакуумный газойль подвергается гидроочистке и смешивается с гудроном. Этот вариант относительно прост и недорог. Однако он характеризуется ограниченными возможностями по снижению содержания серы, особенно при переработке высокосернистых нефтей. При переработке арланской нефти получается котельное топливо с содержанием серы 3,4%, товарной смеси западносибирских нефтей — 1,7%. Содержание серы соответственно в мазутах составляет 3,8 и 2,3%. Дальнейшее снижение содержания серы в котельном топливе невозможно без изменения соотношения смешиваемых компонентов. Отсюда очевидно, что необходимо уменьшение содержания серы непосредственно в мазуте или гудроне. При гидрообессеривании мазута и соответствующей стабилизации гидрогенизата может быть получено котельное Топливо с содержанием серы менее 1,0%, а в отдельных случаях и до 0,5%. [c.177]


    На Павлодарском заводе была построена первая в Союзе комбинированная установка каталитического крекинга КТ-1 в составе вакуумной двухколонной установки, висбрекинга гудрона, гидроочистки тяжелого вакуумного газойля и собственно каталитического крекинга системы Г-43-107. Кроме КТ-1, были предусмотрены производства водорода, серы и битума. Позже, в 1986 г., была введена установка коксования 21-10/9 мощностью 600 тыс. т по сырью. Освоение первого комплекса КТ-1 потребовало много времени и дополнительных затрат. [c.141]

    Процесс висбрекинга гудрона проводят при температуре до 500 С. При переработке смеси гудрона западно-сибирской нефти с 5 % (масс.) тяжелого газойля каталитического крекинга на блоке висбрекинга получают 76,2 % (масс.) сырья для коксования, 6 % (масс.) компонента котельного топлива, 10,1 % (масс.) компонента дизельного топлива, 2,95 % (масс.) нестабильного бензина и 3,75 % (масс.) жидкого газа. Гидроочистка сырья каталитического крекинга предусмотрена в двух параллельно работающих реакторах со стационарным слоем алю- [c.119]

    Тяжелый остаток атмосферной перегонки—мазут—выпускается в качестве товарного котельного топлива. Часть мазута направляется на блок вакуумной перегонки, где делится на вакуумный дистиллят и гудрон. Затем гудрон окисляется в битум. Сероводород с установок гидроочистки поступает на установки производства серной кислоты или серы, также включенные в состав завода. [c.54]

    С созданием процессов пиролиза вакуумного газойля, деасфальтизатов к даже сырой нефти пиролиз можно рассматривать как альтернативу каталитическому крекингу и другим деструктивным процессам, обеспечивающим углубление переработки нефти. Например, был рассчитан материальный баланс (табл. VI.29) для четырех НПЗ химического профиля, различающихся по составу деструктивных процессов переработки вакуумного газойля и гудрона (во всех схемах часть прямогонного бензина направляется на риформинг, часть — на пиролиз, атмосферный газойль полностью поступает на пиролиз). В схемах I и II вакуумный газойль поступает на каталистический крекинг, в схеме III после предварительной гидроочистки направляется на пиролиз, а [c.161]

    Так как Azk>0, а Azs<0 (содержание серы убывает), оба члена этого уравнения являются отрицательными. Нами рассчитаны величины qn для различных вариантов гидроочистки — гидрокрекинга мазута и деасфальтированного гудрона. В исследованиях изменением режимных параметров удавалось регулиро- [c.152]

    Вакуумная перегонка, гидроочистка вакуумного газойля и газойля коксования ККФ гидроочищенных газойлей замедленное коксование гудрона алкилирование [c.150]

    Атмосферная перегонка нефти на таких установках осуществляется в одной колонне. Предпочтительным сырьем для них являются нефти с относительно невысоким содержанием бензиновых фракций и. растворенных газообразных углеводородов. Пример установки такого типа — ЭЛОУ-АВТ-7 со вторичной перегонкой бензина, запроектированная ВНИПИНефть по технологическому регламенту БашНИИ НП. Установка предназначена для обессоливания и перегонки 6—7 млн. т в год смеси нефтей. На установке вырабатывается следующий ассортимент фракций С,—С4 — сжиженный газ С5 — 90 °С — компонент автомобильного бензина 90—140 °С — сырье каталитического риформинга для производства высокооктанового компонента автомобильного бензина 140—250 °С — авиационное турбинное топливо 250—320 °С — легкий компонент дизельного топлива для скоростных двигателей 320—380 °С — тяжелый компонент дизельного топлива для скоростных двигателей (подвергается гидроочистке) 380—530 °С — сырье каталитического крекинга гудрон — сырье висбрекинга, для производства битумов. [c.73]

    Сопоставление капитальных вложений и зксплутационных расходов этих вариантов показывает также преимущества варианта комбинирования гидроочистки вакуумного газойля с гидрообессериванием гудрона по сравнению с прямым гидрообессериванием мазута. [c.154]

    Из гудрона дополнительное количество светлых получают, применяя процесс термического крекинга или коксования. При этом вырабатывается гамма продуктов газ, содержащий непредельные углеводороды и используемый как сырье ГФУ, бензин, легкий и тяжелый газойли. Бензин облагораживается методами глубокого гидрирования и каталитического риформирования, легкий газойль — гидроочисткой. [c.57]

    I — водород // - исходное сырье — мазут 111 - циркулирующий водород /1 —сбрасываемый газ Г —конденсат К/ —сухой газ V/I —жирный газ V///--легкий бензин —тяжелый бензин . -керосин на гидроочистку X/— дизельное топливо на гидроочистку Л//— обессеренное котельное топливо А ///- циркулирующий вакуумный газойль Х/К — вакуумный гудрон с отработанным катализатором. [c.274]

    Этот гидрогенизат может быть использован в качестве тяжелого газотурбинного топлива. Его можно смешать с гудроном и получить котельное топливо с пониженным содержанием серы (1,0—1,8% вместо 2—2,5% в исходном мазуте). Гидроочищенный газойль используют и как сырье для каталитического крекинга. Расход водорода на гидроочистку газойля, по данным [11], составляет от 0,6 до 0,9%. [c.16]


    Одним из наиболее важных и ценных продуктов переработки нефти является нефтяной кокс. В состав многих НПЗ в настоящее время включается производство кокса методом замедленного коксования. Повторно применяемые установки замедленного коксования имеют мощность 600 и 1500 тыс. т/год по сырью. При составлении балансов следует иметь в виду, что для получения кокса, удовлетворяющего требованиям стандартов по содержанию серы и металлов (ванадия, никеля и др.), из сернистых нефтей, может потребоваться сооружение комплекса, включающего не только установку замедленного коксования, но и несколько установок подготовки сырья (гидроочистка вакуумного газойля, термический крекинг гидроочищенного вакуумного газойля). Получить стандартный нефтяной кокс непосредственно замедленным коксованием гудрона, как это показано на рис. 2.2, можно, только из нефтей с относительно невысоким содержанием серы и ванадия. [c.58]

    Дальнейшим развитием установок ГК и Г-43-107 являются отечественные комбинированные установки типа КТ, разработанные Грозгипронефтехим по данным научно-исследовательских институтов. Комбинированная установка КТ-1 (рис. 7.3) вклю чает блоки вакуумной перегонки мазута, висбрекинга гудрона, гидроочистки вакуумного дистиллята, каталитического крекинга гидроочищвдного сырья на цеолитсодержащем, катализаторе ректификации продуктов и газоразделения, утилизации ггешшг йна [c.265]

    В последние годы в мировой нефтепереработке наблюдается тенд<-нция к непрерывному утяжелению сырья. На современных зарубежных установках перешли к переработке глубоковакуумных газойлей с температурой конца кипения 540 — 620 °С. На специально запроектированных установках каталитическому крекингу под— вергс1ют остаточное сырье мазуты и даже гудроны, или их смеси с дистиллятным сырьем без или после предварительного облагораживания гидроочисткой, деасфальтизацией или деметализацией. [c.103]

    Для современных промышленных установок, перерабатывающих типовые восточные нефти, рекомендуются следующие фракции, из которых составляются материальные балансы переработ-. ки бензин 62—140°С (180°С), керосин 140 (180)-240°С, дизельные топлива 240—350 °С, вакуумные дистилляты 350—490 °С (500 °С), тяжелый остаток — гудрон >490(500 °С). Нефти сильно различаются по фракционному составу. Некоторые нефти богаты содержанием компонентов светлых, и количество в них фракций, выкипающих до 350 °С, достигает 60—70 вес. %. Фракционный состав нефтей играет важную роль при составлении и разработке технологической схемы процесса, расчете ректификационной системы и отдельных аппаратов установки. Температуры выкипания отдельных фракций зависят от физико-химических свойств, нефти. Последние учитываются при разработке и выборе схем первичной переработки, аппаратурном и материальном оформлении установки. Так, при переработке нефтей, содержащих серу, требуются дополнительные процессы гидроочистки для обессеривания нефтепродуктов, а для парафинистых нефтей — депарафинизацион-ные установки по обеспарафиниванию фракций, особенно кероси-но-газойлевых. Для проектирования новых установок необходимо разработать соответствующий регламент и получить нужные рекомендации. [c.23]

    По топливному варианту нефть перерабатывают в основном на моторные и котельные топлива. При одной и той же мощности швода по нефти топливный вариант переработки отличается наименьшим числом технологических установок и низкими капиталовложениями. Переработка нефти по топливному варианту может быть глубокой и неглубокой. При глубокой переработке нефти стремятся получить максимально возможный выход высококачественных авиационных и автомобильных бензинов, зимних и летних дизельных топлив и топлив для реактивных двигателей. Выход котельного топлива в этом варианте сводится к минимуму. Таким образом, предусматривается такой набор процессов вторичной переработки, при котором из тяжелых нефтяных фракций и остатка — гудрона получают высококачественные легкие моторные топлива. Сюда относятся каталитические процессы — каталитический крекинг, каталитический риформинг, гидрокрекинг и гидроочистка, а также термические процессы, например коксование. Переработка заводских газов в атом случае направлена на увеличение выхода высококачественных бензинов. При неглубокой переработке нефти предусматривается высокий выход котельного топлива. [c.151]

    Ниже даны методика и пример расчета гидроочистки дизельной фракции, которая представляет собой смесь прямогонноа дизельной фракции и дизельной фракции, выделенной из продуктов термического крекинга гудрона. При графо-аналитиче-ском расчете реактора гидроочистки принята модель адиабатического реактора идельного вытеснения. [c.144]

    Современное масляное производство — это целый комплекс сложных технологических процессов, в котором каждая установка выполняет определенные задачи по разделению исходного сырья и облагораживанию полученных продуктов. В состав масляного производства входят следующие установки деас-фальтизация гудронов в пропановом растворе, фенольная очистка дистиллятного и остаточного сырья, депарафинизация масел, контактная очистка отбеливающими землями или гидроочистка масляного сырья. [c.212]

    Осуществлена гидроочистка жидких парафинов, полученных карбамидной депарафинизацией, от серы и смолистых примесей. Сульфирование полученного продукта дает кислый гудрон, который может быть использован в производстве моющих средств и для окисления Гидрированием в две ступени ферганских бензинов получены очшценные растворители бензин БР-1, уайт-спирит и др. [c.64]

    I — атмосфе"рная перегонка 2 — вакуумная перегонка 3 — гидроочистка бензина и средних дистиллятов и гидрокрекинг 4 — гидрообессеривание вакуумного газойля 5 — гидрообессеривание гудрона б — газофракционирование 7 — фракционирование бензина и каталитический риформинг 8 — каталитический крекинг флюид 9 — производство (экстракция) ароматических соединений 10 — производство олефинов (пиролиз) И — алкилирование 12 — компаундирование бензинов  [c.160]

    Производство масел из нефтей Урала, Поволжья и Западной Сибири включает (рис. 1.6) деасфальтизацию гудрона, селектив ную очистку узких масляных дистиллятов и деасфальтизата, де-парафинизацию рафннатов селективной очистки, гидроочистку или контактную очистку депарафинированного масла, смешение очищенных остаточных и дистиллятных компонентов друг с другом и с композициями присадок.  [c.17]

    Установки для сернокислотной (кислотно-щелочной) и контактной очистки парафинов аналогичны применяемым при производстве масел. Перколяционная очистка осуществляется путем фильтрования через неподвижный слой адсорбента — отбеливающей глины. Указанные способы имеют следующие общие недостатки большие потери очищаемого продукта, образование трудноутилизуемых отходов (кислый гудрон или отработанный адсорбент), поэтому с 60-х годов все более широкое применение наход> т малоотходный процесс гидроочистки. [c.254]

    Сырье. С утяжелением сырья степень его очистки в заданных условиях процеоса снижается. Происходит это по следующим причинам. С повышением средней молекулярной массы фракции доля серы, содержащейся в устойчивых относительно гидрирования тиофеновой, бенз-, дибензтиофеновой и подобных структурах, увеличивается. По мере утяжеления сырья (для продуктов, выкипающих выше 350 °С) все большая его часть находится в условиях гидроочистки в жидкой фазе, что затрудняет транспортирование водорода к поверхности катализатора. При жидкофазной гидроочистке с утяжелением сырья скорость диффузии водорода через пленку жидкости на катализаторе снижается, так как повышается вязкость и снижается растворимость водорода при данных условиях. Возрастание концентрации в сырье полициклических ароматических углеводородов, смол и асфальтенов, прочно адсорбирующихся на катализаторе и обладающих высокой устойчивостью относительно гидрирования, также снижает глубину очистки. Так, удаление из вакуумного гудрона 20 /о асфальтенов увеличивает кажущуюся константу скорости обессеривания более чем в 4 раза. [c.272]

    Г И дро очистка бензинов вторичного нроис-хожден]1я. Возможность одноступенчатой очистки бензинов, полученных при термическом крекинге, висбрекинге и замедленном коксовании гудрона арланской высокосернистой нефти подробно изучена в работе [252] (табл. 3.5). Было отмечено, что при очистке высокосернистых бензинов вторичного происхождения в одну ступень при определенных условиях достигается предельная глубина обессеривапия и дальнейшее ужесточение режима оказывается неэффективным. Так, при гидроочистке бензина замедленного коксования с массовым содержанием серы 1,26% были получены следующие результаты  [c.116]

    Коксованием гудрона получают автомобильный бензин, легкий и тяжелый дистилляты коксования, газ и кокс. чДАвтомобильцыи бензин поступает на гидроочистку, легкий дистиллят поступает в качестве сырья на каталитический крекинг илн используется как дизельное топливо, тяжелый дистиллят используют как котельное топливо. [c.56]

    БашНШШ разработал комплекс процессов переработки гудронов путем их деасфальтизации-лёгким бензином с последующим гидрообес-сериванием деасфальтизата [6,7]. Разработанный для гидрообессеривания остаточного сырья шщрокопористый катализатор [8Лобеспе-чивает стабильно глубокую гидроочистку деасфальтированных гудронов непрерывно, в течение 5-8 тыс.ч в зависшлости от характеристики исходного сырья и требований к качеству продуктов [9Д. Анализ катализатора по окончании пробега показал,что, обеспечивая 90-95/ -ное удаление металлов, катализатор способен накапливать до 120  [c.75]

    Современные схемы неглубокой переработки нефти иногда ие включают установок ни термического, ни каталитического крекинга. Кроме установки перегонки нефти на несколько узких фракций предусмотрена гидроочистка отдельных компонентов и в некоторых случаях более широких фракций, которые затем разделяют на более узкие путем вторичной перегонки. Котельное топливо компаундируют из остатков перегонки и тяжелых дистиллятных компонентов, не подвергающихся гидроочистке. Автомобильный бензин с достаточно высоким октановым числом получают в процессе каталитического риформинга тяжелого бензина прямой перегонки. Однако заводы, сооруженные по такой схеме, как правило, нмеют чисто топливный профиль. При необходимости поставлять сырье для нефтехимического синтеза в состав завода включают крекинг-установки или направляют часть малоценных сернистых дистиллятов на установки пиролиза, принадлежащие нефтехимическим заводам. Подробное направление переработки свойственно некоторым нефтеперерабатывающим заводам Западной Европы, сооруженным в 1960 г. На рис. 116 представлена типичная схема глубокой переработки сернистой пефти. Нефть после двухступенчатой электрообессоливающей установки (на схеме не показана) поступает иа атмосферновакуумную перегонку, в результате которой получается несколько светлых дистиллятов, тяжелый газойль и гудрон. Головку бензина и фракцию реактивного топлива после очистки направляют на смесительную станцию для компаундирования. Фракцию тяжелого бензина подвергают каталитическому риформингу для получения высокооктанового компонента бензина или ароматических углеводородов. Кроме того, риформингу подвергается бензиновый дистиллят коксования. Оба компонента сырья предварительно проходят гидроочистку. Предусмотрена экстракция ароматических углеводородов из жидких продуктов риформинга, которая при получении на установке риформинга бензина служит одновременно для отделения и возврата на повторный риформинг непревращенной части сырья. Полученный экстракт путем ректификации разделяют на требуемые компоненты или углеводороды. Керосиновый дистиллят и легкий газойль проходят гидроочистку и используются после этого как компоненты дизельного топлива. Тяжелый вакуумный газойль подвергают каталитическому крекингу в смеси с газойлем коксования. Для увеличеиия выхода светлых на установке каталитического крекинга предусмотрена рециркуляния. Гудрон поступает на установку коксования жидкие продукты этого процесса являются сырьем для установок каталитического риформинга и каталитического крекинга, о чем было упомянуто выше легкий газойль коксования после гидроочистки использустся как компонент дизельного топлива. Кроме того, на установке получают кокс, который можно [c.356]


Смотреть страницы где упоминается термин Гудрон гидроочистка: [c.52]    [c.61]    [c.63]    [c.154]    [c.70]    [c.152]    [c.154]    [c.197]    [c.68]    [c.78]    [c.189]    [c.16]    [c.40]    [c.45]   
Химия и технология нефти и газа Издание 3 (1985) -- [ c.256 ]




ПОИСК





Смотрите так же термины и статьи:

Гудрон



© 2025 chem21.info Реклама на сайте