Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коагуляция растворов высокомолекулярных соединений

    Коагуляция растворов высокомолекулярных соединений [c.381]

    Если коллоидные частицы соединяются непосредственно поверхностями, то коагуляция будет необратимой. Если между соединяющимися частицами остаются небольшие сольватные оболочки или двойной электрический слой, образовавшийся осадок можно снова перевести в раствор. Такой процесс называется обратимой коагуляцией. Растворы высокомолекулярных соединений (ВМС) и некоторых органических веществ образуют на поверхности коллоидных частиц прочные адсорбционно-сольватные слои, способствующие повышению устойчивости коллоидного раствора, т. е. проявляют защитное действие. Стабилизирующее действие этих соединений способствует лиофилизации (гидрофилизации) дисперсных систем по свойствам они становятся близкими к молекулярным коллоидам (обратимы, устойчивы). Если концентрация стабилизатора недостаточна для образования адсорбционно-сольватных слоев, его защитное действие резко снижается. При очистке воды содержащиеся в ней органические коллоиды замедляют процесс коагуляции, повышая устойчивость образующихся коллоидных растворов гидроксидов алюминия и железа. [c.120]


    КОАГУЛЯЦИЯ РАСТВОРОВ ВЫСОКОМОЛЕКУЛЯРНЫХ СОЕДИНЕНИЙ [c.221]

    Растворы высокомолекулярных веществ, если они находятся в термодинамически равновесном состоянии, аналогично истинным растворам обладают абсолютной агрегативной устойчивостью. Высокая устойчивость коллоидных растворов ВМС определяется, в основном, двумя факторами — наличием на поверхности частиц двух оболочек электрической и сольватной (гидратной). Поэтому для коагуляции коллоидов высокомолекулярных соединений необходимо не только нейтрализовать заряд коллоидной частицы, но и разрушить жидкостную оболочку. Выделение ВМС из растворов по своему характеру отличается от коагуляции типичных гидрофобных коллоидов. Так. если для гидрофобных золей достаточно незначительных добавок электролитов, чтобы вызвать коагуляцию, то для высокомолекулярных веществ этого недостаточно. Для выделения дисперсной фазы полимеров необходимы высокие (вплоть до насыщенных растворов) концентрации электролитов. Явление выделения в осадок растворенного ВМС под действием большой концентрации электролита получило название высаливания (опыт 110,113). [c.227]

    Небольшое добавление нейтральных электролитов к водным растворам высокомолекулярных соединений иногда вызывает Помутнение растворов, изменение вязкости и осмотического давления. Иными словами, возникают явления, внешне сходные со скрытой коагуляцией типичных коллоидов. Эти явления часто вызываются химическим взаимодействием между отдельными группами полимера и ионами добавленного электролита. Кроме того, электролит способствует ассоциации и структурированию в растворах высокомолекулярных соединений. [c.208]

    Напротив, лиофильные золи образуются самопроизвольно при помещении некоторых веществ в жидкость и являются гораздо более устойчивыми. Такие золи коагулируют хуже, и коагуляция их обратима (при внесении в жидкость коагулят снова может образовать золь). Обычно вещества, дающие лиофильные золи, это — высокомолекулярные соединения, молекулы которых состоят из тысяч атомов и имеют молекулярные веса более 10 тысяч кислородных единиц. Подобные молекулы-гиганты имеют размеры коллоидных частиц, так что лиофильный золь, в сущности, является молекулярным раствором высокомолекулярного соединения, причем каждая молекула — коллоидная частица. В качестве некоторых примеров лиофильных коллоидов можно назвать растворы желатины в воде, натурального каучука в бензине, плексигласа в хлороформе. [c.11]


    Коагуляцией можно называть только процессы агрегации коллоидных частиц, связанные с установлением между ними коагуляционных контактов. Коагуляции могут подвергаться коллоидные, но не истинные растворы. Можно говорить, например, о коагуляции латексов, но не о коагуляции истинных растворов высокомолекулярных соединений. Неправильное словоупотребление (например, коагулирующая ванна в технологии искусственных волокон) иногда допустимо в своеобразном техническом жаргоне, но неизбежно ведет к принципиальным ошибкам в применении таких терминов, как порог коаг ляции , к смешению понятий коагуляционные структуры и конденсационные структуры и т. д. [c.39]

    Гели и студни. Твердообразная текучая система, образованная коллоидными частицами или макромолекулами высокомолекулярного соединения в форме пространственного сетчатого каркаса, ячейки которого заполнены иммобилизованной жидкостью или газом, называется гелем. Гели, образованные растворами высокомолекулярных соединений, называют студнями. Процесс превращения коллоидного раствора или раствора высокомолекулярного соединения в гель или студень, в отличие от обычной коагуляции, называется коагуляционным структурообразование м. [c.365]

    Все 3. делятся на две большие группы — лиофобные и лиофильные 3. Лиофобные 3., в частности гидрофобные (напр., гидрозоли металлов платины, золота, серебра, сульфидов), являются термодинамически неравновесными, агрегативно неустойчивыми дисперсными системами, способными к агрегации диспергированных частиц — коагуляции. Такие 3. поэтому ие могут быть получены в концентрированном виде и коагулируют при введении малых добавок электролитов, при повышении темп-ры и т. д. В отличие от них, в лиофильных 3. (3. мыл, красителей), дисперсная фаза к-рых обладает на границе с дисперсионной средой весьма малой удельной поверхностной энергией, частицы сильно сольватированы средой. Такие 3. агрегативно устойчивы и термодинамически равновесны. К лиофильным 3. примыкают самопроизвольно образующиеся, а потому предельно высокодисперсные, эмульсии, включая и критич. эмульсии и туманы, возникающие вблизи критич. темп-ры смешения двух жидких фаз или жидкости и пара. Раньше лиофильными 3. считали также растворы высокомолекулярных соединений. [c.55]

    Прибавление малых количеств солей к водным растворам высокомолекулярных соединений не вызывает явной коагуляции, но оно может обусловливать помутнение растворов, повышение вязкости, изменение осмотического давления и некоторых других свойств. Устойчивость растворов высокомолекулярных соединений зависит также от концентрации водородных ионов. В изоэлектрической точке (для желатины при pH = 4,7) осмотическое давление, вязкость и набухание достигают наименьшего значения. [c.158]

    Для лиофобных золей характерным является то, что скрытая стадия их коагуляции весьма коротка, быстро переходит в явную стадию и кончается выпадением дисперсной фазы в осадок. В растворах высокомолекулярных соединений, наоборот, скрытая форма коагуляции может быть весьма продолжительной и часто или совсем не переходит в явную форму, или же хотя и заканчивается видимым превращением всей системы в особую ее модификацию—студень (или гель), но без отделения дисперсной фазы в осадок. Здесь мы остановимся только на коагуляции лиофобных золей. [c.133]

    В развитии коллоидной химии советского периода большое значение имеют исследования А. В. Думанского и Н. П. Пескова, посвященные главным образом изучению образования и строения коллоидных частиц, а также стойкости коллоидных растворов и защитному действию растворов высокомолекулярных соединений. А. И. Рабинович установил механизм процессов коагуляции А. Н. Фрумкин исследовал вопросы кинетики электродных процессов, связанных с общей теорией поверхностных явлений П. А. Ребиндер посвятил свои работы проблеме влияния поверхностных (адсорбционных) слоев на свойства и поведение коллоидных систем К. К. Гедройц создал учение о почвенном поглощающем комплексе и коллоидно-химических свойствах почв. [c.11]

    Высокая устойчивость коллоидных растворов высокомолекулярных соединений определяется двумя факторами — наличием на I поверхности частиц двух оболочек электрической и сольватной (гидратной). Поэтому для коагуляции коллоидов высокомолеку- лярных соединений необходимо не только нейтрализовать заряд коллоидной частицы, но и разрушить жидкостную оболочку. Для этой цели можно сначала в раствор ввести электролит и нейтрали- 5 зовать заряд, причем коагуляции не наблюдается затем добавить какое-либо из дегидратирующих веществ, например спирт, ацетон . или таннин, которые разрушают водную оболочку коллоидной ча- стицы, после чего начинается процесс коагуляции. Последовательность может быть иная вначале дегидратация, а затем нейтрали- зация заряда. [c.400]

    Выпадение дисперсной фазы из растворов высокомолекулярных соединений при действии нейтральных солей (электролитов) происходит только при концентрациях последних в несколько молей на литр или даже в растворах, близких к насыщению. Это явление настолько не похоже на коагуляцию, что оно получило особое название — высаливание. Процесс высаливания растворов высокомолекулярных соединений внешне сходен с высаливанием в обычных истинных растворах, где выделение вещества из раствора происходит путем понижения присущей ему растворимости.  [c.400]


    Процесс перехода раствора в студень называется застудневанием или желатинированием. Желатинирование — это своеобразная коагуляция, когда одновременно с дисперсной фазой выпадает в осадок и дисперсионная среда. Желатинирование происходит в том случае, когда частицы золя сильно связаны с дисперсионной средой. Поэтому такие типичные коллоидные растворы, как золи благородных металлов, не способны к образованию гелей, а обработка растворов высокомолекулярных соединений сильно де- [c.409]

    Типичные гидрофобные золи легко коагулируют при прибавлении к ним малых количеств электролитов (миллиграммы на литр). Растворы высокомолекулярных соединений, наоборот, обладают большой устойчивостью против коагулирующего действия электролитов. Многочисленными исследованиями было установлено, что растворы ВМС, будучи прибавлены к гидрофобным золям, сообщают им повышенную устойчивость к электролитам. Так, если к золю золота (гидрофобный коллоид) прибавить небольшое количество желатина, гидрозоль золота становится более устойчивым. При прибавлении электролитов даже в количествах, значительно превосходящих порог коагуляции, а также при длительном стоянии этот золь не испытывает практически никаких изменений. Если этот золь выпарить, то при смешении сухого препарата с водой вновь образуется коллоидный раствор. Таким образом, типичный гидрофобный золь золота при прибавлении к нему желатина как бы приобрел свойства гидрофильного золя и стал обратимым. Подобное явление получило название защитного действия или просто защиты, а сами вещества, повышающие устойчивость гидрофобных золей, получили название заштатных. [c.476]

    Коагуляция загрязнений, находящихся в масле в коллоидном или мелкодисперсном состоянии, может быть вызвана определенными веществами — коагулянтами, а также может происходить под влиянием механических, тепловых и световых воздействий, электрического поля и т. п. В качестве коагулянтов используют неорганические и органические электролиты, поверхностноактивные вещества, не являющиеся электролитами, коллоидные растворы поверхностно-активных веществ и гидрофильные высокомолекулярные соединения. [c.118]

    Таким образом, впервые высказанная Н. П. Песковым мысль (стр. 132), что основной причиной стабильности лиофобных золей является сольватированность (гидратированность) частиц за счет сольватации ионов диффузного слоя, находит свое приложение и в новейших теориях коагуляции ионы-коагуляторы, сжимая диффузный слой, тем самым как бы, обнажают (десольватируют, дегидратируют) частицы, понижая расклинивающее действие сольватных (гидратных) оболочек этих частиц. Решающая, согласно этим взглядам, роль десольватации (дегидратации) в коагуляции лиофобных золей приводит к некоторой общности этого вида коагуляции с коагуляцией растворов высокомолекулярных соединений (высаливанием) (стр. 222). Доказательство исключительно важной роли в коагуляции именно десольватации (дегидратации) можно видеть на примерах коагуляции гидрозолей от прибавления к ним некоторых неэлектролитов. [c.148]

    Порог коагуляции данного положительного золя определяли 0,01 % растворами ЫаС1 и М 504 в отсутствие и при введении ПВС, содержащего 11 % ацетатных групп. Устойчивость дисперсий в присутствии ПВС, который наряду с ионно-электростатическим и сольватным факторами устойчивости стабилизирует систему, в 4 раза выше. Известно, что растворы высокомолекулярных соединений и стабилизированные коллоидные растворы мало чувствительны к добавлению электролитов, поэтому наиболее приемлемым методом очистки стоков должен быть метод гетерокоагуляции. [c.98]

    Испытания печатных красок проводятся для определения степени соответствия ее показателей нормам, регламентируемым стандартами и техническими условиями, либо для выбора оптимальных режимов печатания, обеспечивающих требуемое качество печатного оттиска и, наконец, с целью предусмотрения необходимых средств для подготовки краски к использованию. Нами определялись некоторые технологические характеристики растворов высокомолекулярных соединений нефти в минеральных маслах с целью оценки их пригодности для использования в качестве печатных красок. Смеси приготавливали с использованием масла МП-12, в которое добавляли 10% мае. ВМС. Растворение ВМС проводили при темпера1урах от 90 до 140°С в течение 30 минут при перемешивании, В процессе закрепления краски на оттиске част1. растворителей и низкомолекулярных компонентов связующего впитывается в поры бумаги. При этом возможны также проникновение в поры бумаги краски, а также коагуляция пигментов на поверхности бумаги. Последние два обстоятельства оказывают существенное влияние на качество оттиска. Определяющими показателями качества красок в этих случаях являются их дисперсность, реологические характеристики, агрегативная устойчивость против расслоения. С увеличением дисперсности системы, то есть с уменьшением размеров агрегатов частиц пигментов, увеличивается степень их проникповения б поры бумаги. От концентрации частиц и [c.265]

    Лиофобные золи характеризуются сравнительно короткой стадией скрытой коагуляции для высокомолекулярных соединений период скрытой коагуляции может быть продолжительным. Часто скрытый период коагуляции в растворах высокомолекулярных соединений совсем не переходит в явную форму нли заканчивается студнеобразовацием. [c.367]

    При добавлении к золю высркомолекулярного соединения, например желатина, агрегативная устойчивость его значительно повышается. Объясняется это тем, что макромолекулы длиной до 800 10 м, адсорбируясь на поверхности коллоидных частиц, покрывают их мономолекуляриым слоем, из-за чего коллоидный раствор низкомолекулярного соединения превращается как бы в коллоидный раствор высокомолекулярного соединения с присущими ему свойствами. Если высокомолекулярного соединения будет добавлено недостаточно для мономолекулярного покрытия коллоидных частиц, то наблюдается не повышение, а понижение устойчивости золя. В этом случае одна длинная макромолекула, адсорбируясь своими отдельными звеньями одновременно на нескольких коллоидных частицах, как бы стягивает их в один общий агрегат, уменьшая тем самым агрегативную устойчивость коллоидной системы. При этом происходит сенсибилизация, т. е. повышение чувствительности коллоидного раствора к факторам коагуляции. Поскольку защищенный золь в противоположность незащищенному обладает высокой агрегативной устойчивостью, он может быть получен более концентрированным, о имеет большое физиологическое и техническое значение. Например, находящиеся в крови человека в коллоидном состоянии малорастворимые карбонаты и фосфаты кальция не выпадают в осадок потому, что защищены высокомолекулярными белковыми веществами. Когда при заболевании содержание защитных белковых веществ в крови становится недостаточным, карбонаты и фосфаты кальция начинают выпадать в осадок, образуя камни в почках, печени и других частях организма. Защитное действие высокомолекулярных соединений ши- [c.350]

    Геле- и студнеобразование происходит только в том случае, когда к коллоидному раствору или раствору высокомолекулярного соединения добавляется небольшое количество электролитов, вызывающих десольватацию коллоидных частиц или макромолекул только в некоторых частях (на концах и краях). При добавлении же насыщенных растворов электролитов коллоидные частицы или макромолекулы высокомолекулярных соединений десольвати-руются по всей своей поверхности, поэтому происходит коагуляция, или высаливание, т. е. разделение системы на две фазы, а не геле- или студнеобразование. Процесс коагуляционного студнеобразования протекает не мгновенно, а с той или иной скоростью, зависящей от концентрации дисперсной фазы или высокомолекулярного соединения и от природы и концентрации ионов электролитов, введенных в раствор. [c.367]

    ФЛОКУЛЯЦИЯ (от лат. flo ulus — клочок) — выделение из суспензий, золей или растворов высокомолекулярных соединений сильно гидратированного хлопьевидного осадка. Обусловлена молекулярными силами притяжения мещду коллоидными частицами или макромолекулами высокомолекулярных соединений. В коллоидных системах аналогична явной коагуляции. Ф. высокомолекулярных соединений из их истинных растворов происходит в результате изменения т-ры, водородного показателя (pH) или при добавлении низкомолекулярных соединений. В процессе Ф. часто наблюдается коацерва-ц и я — разделение смеси па два слоя, один из к-рых представляет собой насыщенный раствор высокомолекулярного соединения в растворителе, а второй слой растворителя в высокомолекулярном соединений. Обычно эти слои выделяются в виде мельчайших капелек (коацерватов). В полярных средах капельки приобретают электр. заряд, придающий им определенную агрегативную устой-чивость. Коацервация происходит при взаимно ограниченной растворимости компонентов раствора. Если агрегативная устойчивость коацер- [c.655]

    Во втором издании в соответствии с замечаниями ряда профессоров, преподавателей и других читателей переработаны главы IV—Электрические свойства коллоидных систем и VI—Коагуляция и стабилизация коллоидных систем несколько дополнены главы VIII—Полуколлоиды, IX—Высокомолекулярные соединения и X—Свойства растворов высокомолекулярных соединений исключены некоторые второстепенные материалы. Общий характер книги остался прежним—краткий учебник по коллоидной химии для нехимических специальностей высших учебных заведений СССР. [c.4]

    Что касается явной формы коагуляции растворов ВМС, то она протекает настолько отлично от явной коагуляции лиофобных золей, что даже самый термин коагуляция утрачивает тот обычный смысл, какой ему придают в применении к лиофобным золям, и его заменяют двумя терминами—тысаливание и застудневание (желатинирование)—соответственно двум отличным. друг от друга формам процесса явной коагуляции растворов ВМС. Если у лиофобных золей процесс явной коагуляции всегда или почти всегда связан с понижением значения С-потенциала до критического и ниже, то у растворов высокомолекулярных соединений С-потен-циал или совсем не играет никакой роли, так как многие из этих систем вообще лишены заряда, или же роль эта своеобразна и связана с величиной pH, например в растворах полимеров-электролитов, в частности белков. [c.221]

    Процесс укрупнения коллоидных частиц носит название коагуляции. Заметим, что укрупнение жидких частиц называется коалес-ценцией. Коагуляция может закончиться выпадением коллоидного вещества в осадок. Процесс, выпадения коллоидного вещества в Осадок называется седиментацией. При коагуляции золей кремниевой кислоты, гидроокисей железа, хрома, алюминия и ряда других веществ образуются студни, или гели, -а процесс их образования называется застудневанием или желатииизацией. Студни особенно легко дают растворы высокомолекулярных соединений. [c.240]

    В учебнике изложены основные сведения о классификации дисперсных систем очистка дисперсных систем и растворов высокОглолекулярных соединений их молекулярно-механические свойства поверхностные явления адсорбция электрокинетические явления устойчивость и коагуляция лиофобных золей структурно-кинетические свойства дисперсных систем и растворов высокомолекулярных соединений их оптические свойства полуколлоиды эмульсии пены аэрозоли. [c.2]

    Коллоидные растворы подвергаются коагуляции при невысокой концентрации электролитов. Можно в значительной степени повысить их устойчивость против электролитной коагуляции, создав дополнительно на поверхности коллоидных частиц адсорбционные слои с повышенными структурно-механическими свойствами. Они могут совершенно предотвратить коагуляцию электролитами. Такая стабилизация золя по отношению к электролитам добавлением незначительного количества раствора высокомолекулярных соединений (желатина, казеинат натрия, яичный альбумин и др.) получила название защиты. Защищенные золи весьма устойчивы к электролитам. Так, коллоидные растворы серебра, защищенные белковыми веществами и используемые как лекарственные препараты (протаргол, колларгол), становятся не только мало чуствительными к электролитам, но могут быть упарены досуха сухой остаток после обработки водой снова переходит в золь. [c.245]

    Благодаря большой величине молекул свойства растворов высокополимеров отличаются от свойств растворов низкомолекулярных веществ. Молекулы высокополимеров в растворах сильно соль-ватированы растворы имеют большую вязкость и способность к образованию агрегатных структур.Прибавление электролитов в концентрациях, вызывающих коагуляцию коллоидов, заметного изменения растворов высокомолекулярных соединений не вызывает. При действии больших количеств концентрированного раствора электролита или сухой соли на растворы высокополимеров последние или выпадают в осадок, или образуют эмульсию — расслаиваются. Указанное явление называется высаливанием. Образование двух жидких фаз при высаливании называется коасерва-цией. [c.225]

    Высокомолекулярные соединения и лиофильные коллоиды являются стабилизаторами по отношению к лиофобным золям. Так, если прибавить к раствору соли серебра небольшое количество желатина, белка (или некоторых продуктов распада его) и восстановить серебро до образования золя, то степень дисперсности коллоидного серебра в этих условиях получения оказывается более высокой и золь менее- подвержен влияниям факторов, вызывающих коагуляцию. Такой золь серебра можно путем выпаривания превратить в твердый продукт, который обладает способностью снова растворяться в воде, образуя золь. Вследствие защитного действия, которое в подобных случаях оказывают лиофильные коллоиды, повышая стабильность необратимых золей, их называют защитными коллоидами. При применении защитных коллоидов золи могут быть получены с более высокими концентрациями, чем обычна. Примером концентрираванного золя, получаемого с применением защитного коллоида, является медицинский препарат колларгол, содержащий более 70% серебра. [c.532]

    Несмотря на родственную химическую природу, асфальтены . представляющие более высокомолекулярные соединения, выделены в отдельную группу из-за их нерастворимости в отличие от смол в углеводородах метанового ряда. Асфальтены хорошо растворимы в ароматических растчорителях, но при введении в раствор достаточного количества парафиновых углеводородов происходит их коагуляция и выпадение из раствора. Без наличия третьего компонента, препятствующего коагуляции асфальтенов, так называемого дефлоку-лянта, асфальтены в смеси парафиновых и ароматических углеводородов с незначительным содержанием последних (менее 20%) образуют неустойчивые коллоидные растворы. Причем, как показали исследования [4, 5, б], дисперс- [c.14]


Смотреть страницы где упоминается термин Коагуляция растворов высокомолекулярных соединений: [c.432]    [c.37]    [c.391]    [c.158]    [c.139]    [c.400]    [c.55]   
Смотреть главы в:

Физическая и коллоидная химия -> Коагуляция растворов высокомолекулярных соединений

Краткий курс коллойдной химии -> Коагуляция растворов высокомолекулярных соединений

Физическая и коллоидная химия -> Коагуляция растворов высокомолекулярных соединений

Физическая и коллоидная химия -> Коагуляция растворов высокомолекулярных соединений

Физическая и коллоидная химия -> Коагуляция растворов высокомолекулярных соединений




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные соединени

Высокомолекулярные соединения

Коагуляция

Растворы высокомолекулярных соединени



© 2025 chem21.info Реклама на сайте