Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменение свободной энергии при адсорбции. Энтропия и теплота адсорбции

    Изменение свободной энергии при адсорбции. Энтропия и теплота адсорбции [c.350]

    Предполагается, что энтропия адсорбции одинакова на разных участках поверхности, т. е. на них сохраняется одно и то же число степеней свободы адсорбированного слоя. Поэтому изменения свободной энергии в данном случае эквивалентны изменениям энергии (теплоты) адсорбции. [c.88]

    Для учета взаимодействия между адсорбированными молекулами с достаточной степенью точности можно принять, что изменение свободной энергии системы в основном определяется энергией взаимодействия молекул, в то время как энтропия системы изменяется незначительно. Тогда теплота адсорбции вещества Лг будет зависеть от поверхностной концентрации следующим образом  [c.38]


    По мере того как развивалась теория газовой хроматографии и выяснялись зависимости хроматографических характеристик анализируемых веществ, адсорбентов и жидких неподвижных фаз от их физико-химических свойств, стало возможно не только предсказывать параметры хроматографического разделения на основе термодинамических и кинетических характеристик, но и подойти к решению обратных задач — определению физико-химических параметров по данным, получаемым при помощи газовой хроматографии [I—3]. Наибольшее значение газовая хроматография приобрела для определения термодинамических характеристик. Газо-адсорбционную хроматографию широко используют для измерения изотерм адсорбции. Из данных по изменению величин удерживания с температурой можно вычислять также энтропию и свободную энергию адсорбции. На основе хроматографического изучения адсорбции удается исследовать характер взаимодействия молекул адсорбата и адсорбента. Газо-жидкостная хромато рафия позволяет путем определения величин удерживания вычислять растворимость, теплоту и энтропию процесса растворения, а также измерять давление пара и температуру кипения анализируемых веществ, рассчитывать константы равновесия реакций в растворах и в газовой фазе и определять коэффициенты адсорбции на межфазных границах (жидкость—газ, жидкость—жидкость, жидкость—твердое тело). [c.223]

    Изменения свободной и внутренней энергии, энтропии и теплоемкости газа. Дифференциальная и изостерическая теплота адсорбции. Изменения термодинамических функций адсорбционной системы при предельно малой адсорбции. Возможности, достоинства и недостатки статических и хроматографических методов определения термодинамических характеристик адсорбции при малых заполнениях. [c.145]

    Процесс адсорбции протекает с понижением свободной энергии, изменение энтальпии ЛЯ также должно быть отрицательным, так как энтропия системы уменьшается. При адсорбции молекулы теряют степени свободы и образуют более упорядоченную конфигурацию внутри цеолита. Следовательно, адсорбция — экзотермический процесс, протекающий с выделением тепла. Теплоту этого процесса можно вычислить по изостерам адсорбции, используя уравнение Клаузиуса — Клапейрона (см. разд. Г). [c.615]


    Важной задачей молекулярной теории адсорбции является теоретическое вычисление термодинамических свойств адсорбционных систем — теплот адсорбции, теплоемкостей адсорбционных систем и адсорбционных равновесий — только из свойств адсорбента и адсорбата (литературу см. в обзорах [1]). В связи с этим приобретают большое значение статистические методы расчета свободной и полной энергии, энтропии адсорбции и теплоемкости адсорбата. В то время как для газообразных веществ знание спектра внутренних колебаний и вращений молекул достаточно для расчета их термодинамических функций и их изменений при реакциях в газах с точностью, превышающей точность прямых измерений, в случае адсорбированных веществ аналогичная задача значительно сложнее. [c.419]

    Часть 4 (1961 г.). Теплофизические и термодинамические свойства элементов и соединений. Теплоты сгорания органических соединений. Теплоемкость, энтропия, теплоты образования, свободная энергия образования, изменения теплосодержания и теплоемкости при плавлении, испарении и пр. для элементов, неорганических и органических соединений. Значения термодинамических функций в зависимости от температуры для элементов и некоторых неорганических и органических соединений. Величины эффекта Джоуля — Томсона и изотермического эффекта Дросселя. Термодинамические функции растворов металлов. Теплоты адсорбции, смачивания, нейтрализации и др. [c.97]

    Для развития теории влияния ПАОВ на стадию разряда — ионизации электрохимических реакций большое значение имеют данные, полученные при различных температурах, поскольку из них можно рассчитать соответствующие изменения теплоты, свободной энергии и энтропии активации, вызванные адсорбцией ПАОВ. Для корректной трактовки кинетических данных необходимы параллельные исследования по влиянию температуры на адсорбцию ПАОВ. Наиболее полные данные по влиянию температуры на адсорбцию ПАОВ и ингибирование ими реакций восстановления катионов С<12+, РЬ +, 2п +, Еи + на ртутном и амальгамных электродах были получены Ф. И. Даниловым и С. А. Па-насенко. Ими показано, что энтальпия адсорбции АЯа не зависит от степени заполнения поверхности ПАОВ, тогда как свободная энергия адсорбции АОд линейно изменяется с ростом 0. Следовательно, рост абсолютной величины АСа происходит за счет увеличения энтропии адсорбции Д5а- [c.170]

    Во всех случаях физической адсорбции и в большинстве случаев хемосорбции выделяется тепло, количество которого можно измерить при подходящих изменениях прямого калориметрического или косвенного термодинамического методов, используемых для измерения теплот химических реакций. Выделение тепла при самопроизвольной адсорбции следует ожидать по следующим соображениям. Для самопроизвольного процесса при постоянных температуре и давлении должно происходить уменьшение свободной энергии системы адсорбент — адсорбат, и, так как адсорбат оказывается более локализованным, часть энтропии его поступательного и вращательного движения теряется. Таким образом, иЛС, и отрицательны, поэтому и АЯ AG + TAS) тоже будет отрицательным, т. е. должно выделяться тепло. Однако де Бур отметил [61], что в некоторых случаях хемосорбцни, идущей с диссоциацией, AS может быть положительной и при высоких температурах (+ГА5) превышать AG и приводить к положительному АН. Такая эндотермическая адсорбция происходит редко, и пока нет достаточного количества примеров, характеризующих ее. Однако следует помнить, что экзотермичность не является неизбежным спутником адсорбции. [c.199]

    Совместное применение термохимического и адсорбционного методов поЗ волило рассчитать изменения дифференциальных термодинамических функций — теплоты, свободной энергии и энтропии адсорбции. Кривые изменения дифференциальной теплоты адсорбции свидетельствуют о том, что адсорбционные центры на поверхности палыгорскита, гидрослюды и каолинита энергетически неоднородны. Начальные величины дифференциальной теплоты у вермикулита близки к начальным теплотам адсорбции воды и других полярных веществ на цеолитах. Это указывает на одинаковый механизм адсорбционного взаимодействия в обоих случаях. На основании измерения теплоты смачивания, как виДно, можно косвенно судить о механизме связывания воды дисперсными минералами. Для получения прямых данных о механизме адсорбции воды, спиртов и других веществ нами были применены спектральные и резонансные методы исследования. [c.4]

    В первоначальном выводе изотермы Тёмкина предполагалось, что изменение стандартной свободной энергии адсорбции с заполнением равно изменению стандартной энтальпии адсорбции с заполнением, т. е. что энтропийные эффекты не имеют места. Таким образом, хотя энтропия адсорбции явно зависит от степени покрытия [74], обычно считается, что ее неконфигурационное слагаемое одинаково при всех заполнениях [30]. При этом допущении величина ЯТ в левой части уравнения (34) представляет собой изменение кажущейся стандартной свободной энергии или теплоты адсорбции с заполнением. В некоторых работах [31, 81] указанная величина довольно нестрого называется скоростью изменения свободной энергии или теплоты адсорбции с заполнением, однако ее следует понимать как изменение кажущейся стандартной свободной энергии и теплоты адсорбции соответственно. [c.426]


    Результаты, приведенные в табл. 1-3, noKasHBaidf, ttfo замена атома водорода в молекуле бензола на группу СНд и на галоген вызывает приблизительно одинаковые изменения теплот, свободных энергий и энтропий адсорбции на обоих адсорбентах. При замене же атома водорода в молекуле бензола на группы N0 и особенно ОН, эти приращения значительно выше для хромосорба-104, что указывает на его большую спе--й(йС,).кал/моль цифичность как адсорбен- [c.34]

    В связи с тем интересом к развитию уравнения состояния адсорбированных веществ, который теперь наблюдается, и в связи с попытками вывода изотерм для многослойной адсорбции в широких пределах относительного давления становится ясной необходимость общего обзора энтропии адсорбции. Кроме вопросов подвижности, а также ассоциации или диссоциации адсорбированного вещества, которые можно определить из энтропии последнего, знание изменений энтропии при адсорбции необходимо, чтобы предсказывать величину адсорбции в заданных условиях, в тех случаях, когда теплота адсорбции известна или может быть рассчитана. Этот способ предсказания величины адсорбции является более обоснованным, чем прямой расчет свободных энергий, хотя в этом направлении, как известно, успешно работал Траубе [10] Уорд и Тордай [11] дали новую интерпретацию результатов его работы. К сожалению, можно использовать только небольшую часть имеющихся данных дJlя определения энтропий адсорбции. Необходимо, чтобы были известны изменения свободной и общей энергий адсорбции относительно определенного стандартного состояния. Дальнейшая трудность в интерпретации энтропии состоит в необходимости знать, каково стандартное состояние с точки зрения степени покрытия поверхности, что, вообще говоря, требует знания величины поверхности адсорбента. [c.257]

    Другой аргумент в пользу преимущества подвижных связей между молекулами каучука и частицами сажи вытекает из анализа данных по теплотам адсорбции. В работах показано характерное различие между светлыми наполнителями (Ва304 и СаСО,,) и сажей. Теплота адсорбции некоторых простых углеводородов, содержащих —7 углеродных атомов в молекуле, рассчитанная на единицу иоверхнссти наполнителя, для светлых наполнителей действительно больше, чем для сажи. Изменение свободной энергии адсорбции (ДС = с1Е Тс18) углеводорода на поверхности светлых наполнителей включает большей энергетический член и другой также относительно большой член с обратным знаком, связанный с уменьшением энтропии адсорбированной молекулы. При адсорбции того же углеводорода на поверхности сажи энергетический член меньше, а уменьшение энтропии при переходе молекулы из свободного состояния в адсорбированное можно рассчитать для двух случаев  [c.466]


Смотреть страницы где упоминается термин Изменение свободной энергии при адсорбции. Энтропия и теплота адсорбции: [c.781]    [c.491]    [c.47]   
Смотреть главы в:

Основы физической химии -> Изменение свободной энергии при адсорбции. Энтропия и теплота адсорбции




ПОИСК





Смотрите так же термины и статьи:

Адсорбции свободная энергия

Адсорбции теплота

Адсорбция теплота теплота адсорбции

Адсорбция энергия

Изменение свободной энергии

Изменение свободной энергии при адсорбции

Изменение энтропии

Свободная адсорбции

Свободная энергия

Свободная энергия адсорбци

энергий теплота

энергий энтропия



© 2025 chem21.info Реклама на сайте