Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Соединения щелочных металлов в природе, их применение

    Соединения щелочных металлов в природе, их применение [c.130]

    Щелочные металлы в природе. Получение и применение. Высокая химическая активность щелочных металлов исключает возможность нахождения их в природе в свободном состоянии. Они встречаются в природе только в виде соединений. Содержание щелочных металлов в земной коре в вес.% составляет  [c.315]


    Взаимодействие калия и натрия с водородом было впервые описано еще в начале XIX в., но состав и природа образующихся соединений выяснены значительно позже. Химические свойства гидридов щелочных металлов были впервые подробно изучены Муассаном в конце XIX —начале XX вв. Дальнейшее изучение гидридов натрия и, в меньшей степени лития, шло главным образом в направлении использования их в органическом синтезе. Начиная с 40-х годов XX в. значительный размах получили исследования по применению гидридов щелочных металлов для получения простых и комплексных гидридов других элементов. [c.49]

    Кобальто-молибденовый катализатор применяется для гидроочистки газойлей [142]. Если исходные нефтепродукты содержат олефины, то катализатор предварительно обрабатывают солями щелочных металлов, при этом он теряет способность гидрировать олефины, сохраняя активность в отношении гидрогенолиза сераорганических соединений [220]. Катализатор такого типа был применен для установления природы сернистых соединений, содержащихся во фракциях 250—300° С нефтей Среднего Востока [69, 221 ]. Предварительно был проведен гидрогенолиз индивидуальных сераорганических соединений для выяснения направления превращения их при температуре 375° С и давлении 50 кг см (табл. 83). [c.386]

    Щелочные металлы в природе. Получение, свойства и применение щелочных металлов. Щелочные металлы находятся в природе только в виде соединений. Натрий и калий относятся к наиболее распространенным элементам. Содержание их в земной коре составляет соответственно 2,4 и 2,35%. Они входят в состав различных минералов. Хлористый натрий Na l образует большие залежи каменной соли огромные количества хлористого натрия находятся в морской воде. Богатые запасы сульфата натрия NaaSOj lOHjO содержатся в заливе Кара-Богаз-Гол. [c.210]

    Основное достоинство издания Паскаля заключается в том, что каждая монография, посвященная тому или иному элементу, составлялась выдающимся специалистом в данной области. Поэтому краткость изложения отчасти компенсируется разумным отбором материала, критическим освещением сообщаемых сведений и, как правило, их достоверностью. Систематизация материала подчинена единому (в основных чертах) плану. Вначале излагаются исторические сведения об открытии элемента и первых работах с его соединениями, о его минералах, распространенности его в природе и размерах производства приводятся различные методы извлечения элемента из руд, физические и химические свойства, аналитические данные и области применения. Затем следует обзор различных соединений данного элемента с другими элементами периодической системы. При этом сплавы всех металлов выделены особо и сведения о них приведены все вместе в ХП томе. В отличие от издания Гмелина, в справочнике Паскаля общие свойства родственных элементов (например, щелочных металлов, радиоактивных, редкоземельных и некоторых других) обсуждаются параллельно. [c.132]


    Современная органическая химия может с гордостью заявить о своей способности синтезировать неизвестные Природе соединения огромной сложности и об обладании набором разнообразнейших методов, позволяющих выполнять почти любые химические трансформации. Такое заявление надежно подкрепляется множеством вьщающихся достижений органического синтеза последних десятилетий. Тем не менее, впечатление от таких мажорных аккордов немедленно тускнеет при сопоставлении с работой химических механизмов даже простейшей живой клетки. Тысячи соединений (и просп,1Х, и исключительно сложных) синтезируются ферментами в любой момент жизни клетки при обычных (физиологических) условиях в воде, в узком интервале значений pH, без применения высоких температур и давлений и без помоши наших суперактивных реагентов типа сверхкислот, сверхсилькых оснований, щелочных металлов, галогенов, литийорганических соединений и т. п.. В любой клетке непрерывно осуществляются многостадийные синтезы огромного разнообразия органических соединений, необходимых для поддержания ее жизни. Все эти синтезы выполняются за считанные минуты с количественными выходами и строго регао- и стереоспецифично Это означает, что все наиболее трудные проблемы стратегии и тактики органического синтеза уже давно решены на химических комбинатах , оперирующих в любой живой системе. Такое высочайшее совершенство биосинтеза невольно вызывает у химиков смеш анные чувства и восхищения, и подавленности от сравнения своих скромных возможностей с достижениями Природы, [c.476]

    Значительно возросло число известных катализаторов димеризации олефинов к настоящему времени описано применение кислот, окислов и солей металлов, щелочных металлов и их гидридов, комплексов металлов, металлоорганических соединений (индивидуальных и в сочетании с различными сокатализаторами). Появление обширных экспериментальных данных создало предпосылки для научно обоснованной классификации катализаторов димеризации олефинов, основанной на природе их активности и механизме каталитического действия [6]. [c.7]

    Особое место занимают работы В. А. Каргина, посвященные электросинтезу минералов, осуществляемому в электродиализаторе. Одна из них, выполненная совместно с О. И. Дмитренко, посвящена изучению процессов выветривания алюмосиликатов [12]. Цель работы заключалась в синтезе некоторых продуктов стадийного выветривания глинистых материалов, получающихся в нормальных условиях в результате щелочного и кислого гидролиза естественных алюмосиликатов. Основная экспериментальная трудность заключалась в воспроизведении природных условий синтеза, протекающего при чрезвычайно низких концентрациях реагирующих веществ кремне-кислоты и окислов металлов, значительно меньших чем 1 мг л. Синтез потребовал бы использования громадных количеств воды, причем неизбежные загрязнения воды и трудности, связанные с улавливанием продуктов реакции, могли совершенно исказить результаты. Для решения этих задач был предложен иной путь, состоящий в ускорении процессов диффузии растворенной части малорастворимых электролитов, применения ускоряющего электрического поля. Использование этого принципа позволило изучить гидролиз некоторых природных минералов в специально сконструированном пятикамерном электродиализаторе. При электродиализе большинства минералов происходит их постепенный распад, связанный с растворением или гидролизом и последовательным переносом катионов и анионов в боковые камеры. Такой процесс соответствует тем явлениям растворения и гидролиза, которые происходили бы при пропускании громадных количеств воды в соответственно длительные промежутки времени. Путем изменения условий синтеза этим методом были получены новые, а также весьма редко встречающиеся в природе кристаллические разновидности, что особенно важно для соединений, обладающих большой энергией кристаллизации. Безусловно, этот метод представляет большой интерес и в смежных областях знания — биологии, медицине, кристаллографии, кристаллохимии, почвоведении и т. д. [c.21]

    Положение водорода в периодической системе. Водород в природе 86. Получение, свойства и применение водорода (202). 87. Вода (206). 88 топы водорода. Тяжелая вода (207). 89. Перекись водорода (208). 90. ные металлы в природе. Получение, свойства и применение щелочных лов (210). 91. Медь (213). 92, Комплексные соединения (217). 93. [c.392]

    Более подробно, чем в школьных учебниках, изложен материал о распространенности щелочных и щелочноземельных металлов в природе, об истории их открытия, физических и химических свойствах, химических соединениях, получении 1И применении этих металлов. [c.22]

    Полимеризацию ненасыщенных соединений под влиянием металлического натрия наблюдал Кракау [1 ] на примере стирола еще в 1878 г. Возможность полимеризации диеновых углеводородов с щелочными металлами впервые установил Кондаков [2]. В дальнейшем Метьюс и Гаррис [3, 4] предложили метод полимеризации диеновых углеводородов с металлическим натрием. Лебедевым [7 ] был создан метод получения синтетического каучука из бутадиена с применением металлического натрия в качестве катализатора. Возможность полимеризации ненасыщенных углеводородов под влиянием натрийорганических соединений была установлена Остромысленским [5]. Дальнейшее развитие работ по исследованию закономерностей этих реакций дало возможность выяснить природу этих процессов. [c.517]


    Соотношение соединений 81 и 82 зависит от используемого фторида щелочного металла. Так, в случае применения фторида цезия получается только соединение 81, тогда как для фторида калия имеет место образование двух соединений 81 и 82, соотношение которых зависит от природы заместителя в бензольном кольце СбНзХ при КР (в скобках выход соединений 81 и 82), 20 °С, [c.83]

    Алкоголяты могут быть амфотерными, сильно кислыми и сильно щелочными. Алкоголяты щелочных металлов, например алкоголят натрия, являются основаниями благодаря этоксид-иону [1—3]. Алкоголят алюминия [4] А1 (ОК)д проявляет прежде всего кислотные свойства благодаря сильной тенденции электрофильного, т. е. кислотного, атома алюминия приобрести пару электронов у электродотного соединения, т. е. основания. По отношению к другой, более сильной кислоте алкоголят алюминия может вести себя как основание, подобно гидроокиси алюминия. В литературе находим некоторые очень интересные исследования в области каталитической конденсации альдегидов с применением кислотных, основных и амфотерных катализаторов. Кульпин-ский и Норд [5] описали применение комплексного алко-голята Mg [А1 (ОК)4]2, который, согласно их экспериментальным результатам, проявляет, повидимохму, амфотерную природу. [c.188]

    Четырехвалентность аниона [Ре(СК)81 позволяет осуществить огромное множество вариаций состава смешанных ферроцианидов с изменением в широких пределах как числа внешнесферных катионов (с учетом сказанного выше), так и соотношения между ними. Здесь можно оставить в стороне вопрос о разного рода нестехиометрических соединениях смешанных ферроцианидов (относимых обычно к адсорбционньш по этому вопросу еще не накопилось достаточного количества точного экспериментального материала, который позволил бы однозначно говорить об истинной природе явлений, обобщаемых термином адсорбция ). Однако, говоря о смешанных ферроцианидах, число которых огромно, нельзя не отметить возможность их многочисленных применений, основанных на факте дифференцированности катионов внешней сферы. Наиболее типичны в этом отношении смешанные ферроцианиды, в состав которых входят помимо других катионы щелочных металлов. В принципе все они могут рассматриваться как катиониты со значительной (практически теоретической) ионообменной емкостью. В некоторых случаях этот факт не остался в стороне от практического использования (извлечение радиоактивного цезия, а в сущности говоря, и радиоактивных лантанидов из сбросных радиоактивных растворов, выделения рубидия из карналлита и отходов электролитического получения магния и т. д.), однако нет никакого сомнения, что это только начало, и можно утверждать, что смешанные ферроцианиды являют собою тип неорганического ионита, наиболее подходящего для широкого использования. К этому можно добавить, что отмеченная выше дифференцирован-ность внешнесферных металлов позволяет надеяться на использование соответствующих соединений для выделения и разделения многих цветных и редких металлов. Введение предварительного замораживания смешанных ферроцианидов (В. В. Вольхин и др.) устраняет довольно серьезную помеху, обусловленную коллоидной природой смешанных ферроцианидов, вследствие чего их трудно использовать в колоночном варианте ионного обмена. С устранением указанного препятствия ионный обмен с использованием смешанных ферроцианидов может быть осуществлен в промышленном масштабе, что весьма актуально для цветной металлургии. Попутно отметим здесь, что, как оказалось, многие черты, свойственные химии ферроцианидов, характерны также для химии пирофосфатов. [c.283]

    Изучение внедрения щелочных металлов проводилось Кабановым, в первую очередь, путем исследования влияния этого процесса на перенапряжение водорода на металлах. Было установлено [191 —193], что перенапряжение водорода на свинцовом, цинковом, серебряном, кадмиевом и алюминиевом катодах в щелочных растворах изменяется во времени и при высоких плотностях тока сильно зависит от природы катиона щелочи, а тафелевские катодные кривые характеризуются повышенным коэффициентом наклона. Такие результаты принципиально могли быть объяснены на основе теории внедрения щелочного металла. Подтверждение этой точки зрения оказалось возможным в результате применения специальных методов исследования. Один из них был основан на появлении задержек [194] на катодных и последующих анодных кривых заряжения на серебре, кадмии, свинце, цинке в шелочах при потенциале вблизи —1,3 в, что связывалось с катодным образованием и анодным разложением соответствующих ин-терметаллических соединений. Снятие анодных хронопотенцио-грамм после катодной поляризации явилось поэтому методом оценки количества образовавшегося сплава [195—198]. [c.39]

    Параллельно с работами, имеюн ими практическое значение, в стране проводились теоретические исследования, которые в дальнейшем обеспечили технический прогресс в области синтеза каучука. Это работы С. С. Медведева с сотрудниками по полимеризации щелочными металлами и их органическими соединениями, работы А. И. Якубчик по установлению зависимости между условиями полимеризации и структурой получаемых полимеров. В этих исследованиях была установлена возможность регулирования структуры при каталитической полимеризации диенов за счет изменения природы катализатора. Одновременно была показана высокая регулярность каучука, получаемого при применении в качестве катализатора лития и его органических соединений. Эти работы были проведены почти на 20 лет раньше работ К. Циглера и Дж. Натта по стереоспецифической полимеризации. [c.257]

    KoH TaiHTa равновесия реакции достигает большого значения (/(=10 000), т. е. практически реакция идет в сторону образования смолы. Выделяющаяся в ходе процесса вода на равновесие и скорость процесса оказывает небольшое влияние и основными факторами, определяющими направление реакции и ее кинетику, являются температура, время реакции, природа и концентрация применяемого катализатора. Чем меньше молярнре отношение фенола к формальдегиду, тем больше молекулярная масса полученной смолы. Увеличение времени поликонденсации способствует более полному связыванию фенола с формальдегидом и повышению средней молекулярной массы конечных продуктов. При избытке альдегида (на 6 молей фенола 7 и больше молей формальдегида) и применении в качестве катализатора какой-либо щелочи или соли щелочного металла получаются термореактивные или резольные смолы. Причем с 1 молем прореагировавшего фенола связывается до 1,5 моля формальдегида. В результате реакций конденсации в конечном итоге образуются трехмерные молекулы. Однако взаимодействие между фенолом и формальдегидом протекает ступенчато с образованием различных соединений на отдельных стадиях процесса и при этом в ходе процесса образуется сложная смесь изомеров и полимергомологов, способных к дальнейшему взаимодействию, с образованием более сложных продуктов конденсации. Это разнообразие объясняется тем, что в ядре фенола имеется три подвижных атома водорода, способных к реакциям замещения. [c.173]

    Первое сообщение о соединениях, содержащих группу SF5O—, в котором было приведено детальное описание эксперимента, опубликовано Кеди с сотрудниками [22]. Каталитическим фторированием, описанным в разд. П1.А, тионилфторид можно превратить в гипофторит пентафторида серы. Применение избытка фтора позволяет получить 50%-ный выход. При фторировании получают также тионилтетрафторид с низким выходом. Действительная природа катализатора и его влияние на реакцию неясна. Более позднее исследование показало, что фториды щелочных металлов, и фторид цезия особенно, также катализируют реакцию фторирования тионилфторида [23]. Реакции в этом более позднем исследовании проводили в статической системе при комнатной температуре. В отсутствие фторида металла образуется только тионилтетрафторид, даже при избытке фтора. Фторирование в присутствии фторида цезия при тех же экспериментальных условиях позволяет выделить гипофторит пентафторида серы с выходом более 95% при небольшом избытке фтора. Подобным образом в присутствии катализатора тионилтетрафторид можно превратить в гипофторит пентафторида серы с таким же высоким выходом. Фторирование тионилфторида, таким образом, состоит из двух стадий, и катализатор требуется только на последней стадии [c.77]


Смотреть страницы где упоминается термин Соединения щелочных металлов в природе, их применение: [c.65]    [c.222]    [c.277]   
Смотреть главы в:

Неорганическая химия -> Соединения щелочных металлов в природе, их применение




ПОИСК





Смотрите так же термины и статьи:

Металлы соединения

Щелочные металлы применение

Щелочные металлы, соединени



© 2025 chem21.info Реклама на сайте