Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ТЕРМОКАТАЛИТИЧЕСКИЕ ПРОЦЕССЫ КАТАЛИТИЧЕСКИЙ КРЕКИНГ

    Термокаталитические процессы. Они включают высокотемпературные процессы, протекающие в присутствии катализаторов 1) каталитический крекинг 2) каталитический реформинг 3) гид- [c.65]

    Каким требованиям должен отвечать катализатор для подобного процесса Во-первых, он должен обладать специфическими хемосорбционными свойствами, то есть с разной активностью притягивать и сорбировать на себе различные молекулы нефтяного сырья. Во-вторых, необходима высокая пористость, причем желательно уметь регулировать диаметр и глубину пор. Это позволит упорядочить процесс адсорбции молекул на активных каталитических центрах, осуществить направленные превращения углеводородов, а затем десорбировать с контакта продукты превращения. В-третьих, структура и свойства катализатора должны способствовать организации наиболее эффективного тепло- и массообмена в реакционной зоне — ведь каталитический крекинг процесс термокаталитический, и роль температуры здесь особенно велика. Отсюда требования к механической прочности катализатора. [c.82]


    ТЕРМОКАТАЛИТИЧЕСКИЕ ПРОЦЕССЫ Каталитический крекинг [I, 27, 38, 45] [c.70]

    Химические процессы связаны с превращением обрабатываемых материалов, целью которого является получение новых соединений. К этому классу процессов относится группа термокаталитических процессов каталитический крекинг, пиролиз, риформинг, гидроочистка и др. [c.8]

    Другим источником получения легких углеводородов являются газы нефтеперерабатывающих заводов, особенно использующих термокаталитические процессы (термический и каталитический крекинг, каталитический риформинг, гидрокрекинг и т. д.). Газ, получаемый на таких заводах, содержит не только предельные, но и непредельные углеводороды, имеющие большое значение для промышленности СК- Выход газов и их состав зависят от процесса и технологического режима переработки каждого вида нефтяного сырья (табл. 5). [c.24]

    Химические процессы связаны с превращением обрабатываемых материалов, целью которого является получение новых соединений. К этому классу процессов относится группа термокаталитических процессов каталитический крекинг, пиролиз, риформинг, гидроочистка и др. Движущей силой процесса являются разности концентраций реагирующих веществ. Скорость процесса определяется законами химической кинетики. [c.16]

    Рассматривая установки каталитического риформинга с точки зрения доноров водорода, следует иметь в виду, что с увеличением содержания серы в нефти объем продуктов, подвергаемых гидроочистке, и потребность в водороде возрастают, в то же время выход его в процессе каталитического риформинга снижается. В связи с этим необходимо искать другие источники водорода или строить специальные установки по его производству. Другими источниками водорода могут быть попутный нефтяной газ, сухие и отдувочные газы различных термических и термокаталитических процессов (например, сухие газы термоконтактного крекинга и каталитического крекинга, отдувочные газы каталитического риформинга гидроочистки, гидрокрекинга и синтеза аммиака, газы от процессов дегидрирования бутанов и бутиленов, пентанов и амиленов, газ, образуемый при пиролизе нефтяного сырья для получения этилена и т. п. [c.100]

    В зависимости от химического состава различают предельные и непредельные газы. Предельные углеводородные газы получаются на установках перегонки нефти и гидрокаталитической переработки (каталитического риформинга, гидроочистки, гидрокрекинга) нефтяного сырья. В состав непредельных газов, получающихся при термодеструктивной и термокаталитической переработке нефтяного сырья (в процессах каталитического крекинга, пиролиза, коксования и др.),входят низкомолекулярные моно-, иногда диолефины как нормального, так и изостроения. [c.243]


    Первый путь — переработка мазутов, полугудронов и гудронов на установках для уже рассмотренных термокаталитических процессов (термический крекинг, коксование и каталитический крекинг) с получением более легких нефтяных продуктов. Одновременно с ними получаются такие продукты, как крекинг-остаток, коксовые и каталитические газойли и кокс. [c.201]

    Вместе с тем реакция изомеризации играет большую роль в современных процессах термокаталитической переработки нефти---рифор.минг, гидрокрекинг, каталитический крекинг. [c.49]

    Совсем другую картину представляют газы вторичных процессов крекинга, риформинга, гидроочистки, изомеризации. Во всех этих процессах молекулы углеводородов претерпевают термическую, каталитическую или термокаталитическую деструкцию. Поэтому в газах этих процессов неизбежно присутствует метан. Далее, если термокаталитические процессы проводятся не под давлением водорода, то в газах обязательно присутствуют алкены, а иногда и алкины С2—С4. Именно поэтому на НПЗ непредельные газы термического и каталитического крекинга, термического риформинга, висбрекинга собирают и перерабатывают отдельно от газов каталитического риформинга, гидроочистки, изомеризации, гидрокрекинга. В этих последних кроме углеводородов в большом количестве содержится водород. [c.100]

    Предлагаемая двухступенчатая переработка может быть осуществлена на имеющемся в настоящее время на НПЗ оборудовании. Термокаталитическая переработка мазута на железорудных окатышах может быть реализована на установке каталитического крекинга типа Г-43-102 с движущимся шариковым катализатором после реконструкции ее для переработки тяжелого сырья в присутствии водяного пара. Гидрооблагораживание широкой газойлевой фракции может проводиться на промышленных установках гидроочистки, также реконструированных для переработки тяжелого сырья, поскольку процесс не требует высоких давлений и температур. Важным условием является прямое питание установки гидроочистки широкой газойлевой фракцией без значительных задержек во времени, поскольку она характеризуется низкой химической стабильностью и склонностью к осмолению и образованию осадков. [c.155]

    Температура в балансе распределения сернистых соединений имеет решающее значение и при последующей переработке прямогонных продуктов с применением термических или термокаталитических процессов (термический крекинг, каталитический риформинг, каталитический 1срекинг, коксование, пиролиз и т. п.). На основании работы завода па ишимбайской нефти [9] составлен баланс сернистых соединений по классам и исследовано влияние температуры процесса на различные классы этих соединений. Состав сернистых соединений (определение но Фараджеру) в дистиллятах, остатке и газе и их сумма сопоставлены с составом сернистых соединений в перерабатываемом сырье (табл. 6, 7 и 8). [c.36]

    В этом разделе мы рассмотрим вопросы термодинамики, химизма и механизма превращений углеводородов в ряде процессор тер.мической и термокаталитической переработки нефти, а имеилО в процессах пиролиза, термического крекинга, каталитического крекинга, гидрокрекинга и риформинга, а также в процессах изомеризации, алкилирования и ступенчатой полимеризации углеводородов, [c.110]

    Если в трубчатых печах каталитического крекинга, коксования и других термических и термокаталитических процессов происходит практически полное сгорание топлива, и основную опасность представляет диоксид серы, то в продуктах сгорания, образующихся в регенераторах установок каталитического крекинга, помимо диоксида серы, как правило, присутствует оксид углерода, который приходится дожигать в котлах-утилизаторах. Лишь в последние годы начали принимать меры к полному сжиганию углерода в объеме регенератора. Паллиативной мерой является использование высоких (120—200 м) дымовых труб, что позволяет дымовым газам рассеиваться на значительном расстоянии от земли. [c.320]

    Изопентены — 2-метилбутен-1, 2-метилбутеп-2, З-метилбутен-1 — являются важнейшим сырьем для получения изопрена. Многочисленные исследования [53] показали, что метод дегидрогенизации изопентенов до изопрена (725) является наиболее дешевым и перспективным. Одно из преимуществ этого метода — наличие большого запаса дешевого сырья, в отличие от других методов, которые в качестве сырья применяют ацетон и ацетилен или изобутилен и формальдегид. Метод дегидрогенизации основан на применении в качестве сырья изопентана, выделенного из газового бензина и изопентанов, полученных в процессах термокаталитической переработки средних и тяжелых парафиновых углеводородов (термический или каталитический крекинг), или в процессе каталитической дегидрогенизации фракции С5, выделенной из газового бензина. [c.496]


    Сырьем установок коксования являются остатки перегонки нефти - мазуты, гудроны производства масел - асфальты, экстракты термокаталитических процессов - крекинг-остатки, тяжелая смола пиролиза, тяжелый газойль каталитического крекинга и др. За рубежом, кроме того, используют каменноугольные пеки, сланцевую смолу, тяжелые нефти из битуминозных песков и др. [c.383]

    Сырьем для процесса коксования служат остатки перегонки нефти (мазуты, гудроны) и термокаталитических процессов (крекинг-остатки, тяжелая смола пиролиза, тяжелый газойль каталитического крекинга). [c.90]

    Как видно из данных, приведенных в табл. 6, много оксида углерода поступает в атмосферу с термокаталитических установок, в которых катализатор регенерируется в результате выжига отложившегося на нем кокса. На некоторых заводах при высокой единичной мощности этих установок они могут явиться основными источниками выбросов оксида углерода. Учитывая, что в ближайшие годы в связи с углублением процессов переработки нефти каталитический крекинг получает широкое развитие, необходимо уделить серьезное внимание разработке мер по сокращению выброса оксида углерода с этих установок. [c.43]

    По общепринятой рациональной схеме переработки нефти (см. приложение) газы всех термокаталитических процессов перерабатывают на специальных установках фракционирования газов. Газы каталитического крекинга, бедные метаном, разделяют простым [c.289]

    В настоящее время практически отсутствуют данные по кинетике процессов термического и термокаталитического разложения сераорганических соединений, содержащих в молекуле 10 и более углеродных атомов, присутствие которых можно ожидать в средней и высокомолекулярной частях сернистых нефтей. Несколько лет назад в отделе химии Башкирского филиала АН СССР были начаты работы по изучению кинетики и механизма каталитических превращений сернистых соединений [92, 94]. Изучение превращений индивидуальных сернистых соединений ведется в присутствии промышленного шарикового алюмосиликатного катализатора в условиях, приближающихся к заводскому режиму каталитического крекинга. Сернистые соединения берут в виде раствора их в нефтяных фракциях в концентрациях, близких к фактическому содержанию сернистых соединений в соответствующих нефтяных фракциях. Изучение механизма и кинетики каталитических превращений сернистых соединений в таких условиях позволит не только получить новые данные об их свойствах и реакциях, но и даст ответ на ряд весьма важных технологических вопросов, связанных с каталитической переработкой дистиллятов сернистых нефтей. [c.362]

    Отличительной чертой газов термокаталитических процессов является высокое содержание пзобутана. Например, в газах каталитического крекинга легкого сырья содержится 32% пзобутана, в газах термических процессов его содержание составляет лишь 3—5%, а в газах пиролиза и парофазного крекинга всего лишь десятые доли процента. [c.42]

    Одним из направлений исследований была разработка технологии термокаталитической переработки высокомолекулярного нефтяного сырья с использованием железоокис-ного катализатора. В результате проведенных исследований были разработаны научные основы технологии переработки мазута на природном железоокисном катализаторе [1.54-1.59], установлено влияние технологических параметров на материальный баланс процесса, построена математическая модель, позволяющая оптимизировать режимные показатели и получать максимальный выход того или иного продукта, разработаны и предложены комплексные схемы переработки продуктов по нефтехимическому и топливному варианту, исследованы превращения железоокисного катализатора. С целью внедрения технологии в производство были разработаны исходные данные для проектирования реконструкции действующих установок каталитического крекинга [1.60, 1.61], проведены полупромышленные испытания технологии [1.62] и подтверждены возможиостт. и перспективность использования железоокисного катализатора для переработки тяжелого нефтяного сырья. [c.18]

    На заводе и Маркус Хук построена специальная бензиноочистная установка Гудри, работа которой такл<е основана на принципе термокаталитической очистки. Технологическая схема процесса на ней упрощена по сравнению со схемой каталитического крекинга, но в принципе осталась такой же. Очшдаемый бепзип при температуре 120 С и давлении около 0,4 МПа поступал в печь для испарепия, откуда выходил с температурой 350 °С и под давлением около 0,4 МПа, т. е. в парообразном состоянии. Бензиновые пары пропускались через д С каталитические камеры, работающие попеременно (работа — регенерация) с переключением через каждые 3 ч. [c.65]

    Иногда эти процессы называют риформингом, хотя если подразумевать нод риформингом (независимо от того, применяются и H Nt катализаторы или нет) такой процесс, в результате которого исходное сыр].о обогащается бен-ЗИН0ВЫЛ1И фракциями, то ни один из процессов каталитической переработки дистиллятов термического крекинга или риформинга не мол ет именоваться каталитическим риформингом. В конечном счете во все.х случаях мы пмеем дело лишь с улучшением отдельных качественных параметров исходного дистиллята. Но если под риформингом подразумевать любой процесс, который приводит к изменению формы (а не величины) молекул углеводородов исходного сырья, то любой процесс термокаталитической обработки дистилля-та можно назвать риформингом. Специфичность рассматриваемой группы процессов каталитического облагораживания дистиллятов термического крекинга и риформинга состоит в том, что в них используются алюмосиликатные катализаторы. [c.78]

    В отличие от парофазного каталитического крекинга газойля, изученного нами с целью ориентировочной оценки общих термокаталитических свойств выб])анпыX катализаторов, в процессе ката.иитической очистки катализатор нен])еры]1но работал не 40 мин, а 120 мин при скорости нодачи сырья от 0,5 до 1 ч ([ актически катализатор мог непрерывно работать в процессе очистки нри 350— С значительно более длительное время — от 4 до 34 ч, как будет показано и дальнейшем. [c.97]

    В литературе встречается указание на то, что при помощи ультрафиолетовых спектров можно определить в высококипящих фракциях пефти весьма низкие концентрации (до 0,08%) конденсирован-нкх полициклоароматических углеводородов. Следует, однако, подчеркнуть, что для исследования брались высококипящие фракции нефти, подвергавшиеся термокаталитической переработке в довольно жестких условиях. Первая фракция (426—555° С) была получена при вакуумной перегонке очищенного смазочного масла, вторая (315—371° С) — выделена из газойля каталитического крекинга и третья (371—437° С)—из мазута, полученного в процессе парофазного крекинга. Характеристика физических и химических свойств этих фракций [55] показывает, что конденсированные полициклические ароматические структуры, содержащиеся в них, имеют вторичное происхождение, т. е. образовались в процессе переработки нефти. [c.295]

    Промышленные ироцессы химической переработки нефтяного сырья позволяют получать дополнительное количество свотлых нефтепродуктов (коксование, каталитический крекинг, гидрокрекинг), значительно улучшать их качество (главным образом бензинов), используя как компоненты товарных топлив фракции каталитического риформинга, каталитического крекинга, изомеризации, алкилирования, а также исходные мономеры для нефтехимического синтеза ароматические и непредельные углеводороды (бензол, толуол, ксилолы, этилен, пропилен и др.). Эти процессы химической нереработки нефти и ее фракций делятся на термические и термокаталитические. По способу промышленного оформления их можно разделить на периодические, полинепрерывные и непрерывные. [c.78]

    Термическая стабильность нафтеновых углеводородов выше, чем парафиновых. В процессе термических воздействий парафиновые цепи молекул моно- и полициклических нафтеновых углеводородов отщепляются, часть циклических структур превращается в пизкомолекулярные непредельные углеводороды. Поэтому доля нафтеновых структур в газойлях, претерпевших термодеструктивные превращения, значительно ниже (30—35%), чем в пря-могоппых фракциях. После термокаталитического воздействия нафтеновых углеводородов в газойлевых фракциях остается еще меньше (20—25%). Совместное повторное крекирование смеси газойлей коксования и каталитического крекинга приводит к снижению суммарного содержания парафино-нафтеновых углеводородов в дистиллятных фракциях, выкипающих при температурах выше 200 °С, до 10-15%. [c.24]

    В то же время должен возрастать абсолютный объем переработки нефти, повышаться отбор светлых нефтепродуктов и их качество. Этого можно достигнуть только при широком использовании вторичных процессов. Естественно, что прямая перегонка дает только тот выход светлых нефтепродуктов, который обусловлен природными свойствами нефти. Применение термокаталитических процессов позволяет получать дополнительное количество светлых нефтепродуктов из тяжелых нефтяных фракций. Например, каталитический крекинг вакуумного газойля (фракция 350-500 С, составляюшая 20-30 мае. % на нефть) может дать до 45-50 мае. % бензина, т. е. дополнительно 10-15% бензина в пересчете на нефть. Одновременно получается фракция легкого газойля, которую после соответствующего облагораживания можно использовать в качестве дизельного топлива. Не менее важной причиной, обусловливающей необходимость вторичных процессов, является то, что прямая перегонка нефтей (в основном парафинистых) не может дать бензин удовлетворительных качеств. Например, октановое число бензина н.к. -180°С из западносибирской нефти составляет около 63 по исследовательскому методу (и.м.). Процесс каталитического риформинга позволяет получать из таких низкооктановых фракций бензин с октановым числом 95-100 [c.35]

    Углеводородные газы заводов, перерабатывающих сернистые нефти, содержат сероводород. Часть этого сероводорода образуется при термической или термокаталитической деструкции наименее стабильных сернистых соединений, содержащихся в нефтяном сырье, при его термическом и каталитическом крекинге и коксовании. В этом случае сера, содержавщаяся в сырье, распределяется между продуктами процесса. При гидрогенизационных процессах происходит более глубокое разрушение сернистых соединений большая часть их превращается в сероводород и концентрируется в газе. [c.302]

    Гидроочистка дистиллятных фракций (англ. hydrofining of distillates) — термокаталитический процесс улучшения качества дистиллятов путем удаления из них серы, азота, кислорода, смолистых и непредельных соединений в среде водорода. Сырьем для гидроочистки служат прямогонные дистилляты (бензин, реактивные и дизельные топлива, керосин, вакуумные газойли) и дистилляты вторичного происхождения (бензины, легкие газойли каталитического крекинга и коксования). При гидроочистке протекают следующие реакции  [c.40]

    На установке термокаталитического крекирования необходимо создать процесс безостаточной переработки с максимальным выходом жидкообразных фракций до 80..,90 % от исходного сырья для дальнейшей их переработки на установках каталитического крекинга, риформинга, карбамидной депарафинизации и т.д. [c.65]


Смотреть страницы где упоминается термин ТЕРМОКАТАЛИТИЧЕСКИЕ ПРОЦЕССЫ КАТАЛИТИЧЕСКИЙ КРЕКИНГ: [c.15]    [c.9]    [c.166]    [c.148]    [c.170]    [c.68]    [c.218]    [c.442]    [c.30]   
Смотреть главы в:

Крекинг нефтяного сырья и переработка углеводородных газов Изд.3 -> ТЕРМОКАТАЛИТИЧЕСКИЕ ПРОЦЕССЫ КАТАЛИТИЧЕСКИЙ КРЕКИНГ




ПОИСК





Смотрите так же термины и статьи:

Каталитический крекинг Крекинг каталитический

Крекинг каталитический

Крекинг-процесс

Процесс каталитический

ТЕРМОКАТАЛИТИЧЕСКИЕ ПРОЦЕССЫ



© 2025 chem21.info Реклама на сайте