Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Практическое применение рассмотренных явлений

    И. М. Кольтгоф, В. А. Стенгер. Объемный анализ. Госхимиздат, 1950, (т. I. 376 стр.) и 1952, (т. И, 444 стр.). В т. I рассматриваются теоретические основы объемного анализа. Изложена теория методов нейтрализации и соединения ионов, приведены кривые титрования для различных случаев метода нейтрализации. Отдельные главы содержат материал ио теории методов окисления-восстановления, теории индикаторов, по ошибкам титрования. Рассмотрены явления адсорбции и соосаждения, катализа и индукции, применение объемных методов в органическом анализе описаны теоретические положения, касающиеся применения физико-химических методов для определения точки эквивалентности. В т. 11 книги изложено практическое применение методов нейтрализации, осаждения и комплексообразования. В томе 111 (840 стр., 1961 г.) описано применение окислительно-восстановительных методов объемного анализа. [c.486]


    Повышенный интерес исследователей к изучению процессов пробоя полимеров объясняется как стремлением изучить физику явления пробоя, так и расширением областей практического применения полимерных диэлектриков. Представленные в настоящей главе закономерности кратковременной электрической прочности, а также закономерности пробоя, развивающегося вследствие роста дендритов или под воздействием электрических разрядов, рассмотрены в связи со структурой и составом полимерных материалов. [c.128]

    В настоящее время уже нашли практическое применение выпускаемые промышленностью светодиоды на основе карбида кремния, фосфида галлия, а также излучатели инфракрасного света на основе арсенида галлия. Ниже приведены основные достижения в области создания таких светодиодов н более подробно рассмотрены работы, посвященные созданию светодиодов на основе соединений типа которые многие исследователи считают перспективным материалом для диодов, излучающих в видимой области спектра. Значительная часть работ по инжекционной электролюминесценции посвящена исследованию физики этого явления. Именно благодаря успехам в исследовании механизма люминесценции и природы центров излучательной и безызлучательной рекомбинации удалось разработать технологию получения эффективных светодиодов на основе карбида кремния н фосфида галлия. В первую очередь это относится к фосфиду галлия с красным цветом излучения. Для карбида кремния и фосфида галлия с зеленым излучением эти вопросы менее ясны, а для соединений типа Л в они исследованы еще в меньшей степени. [c.34]

    В книге рассмотрены новые методы исследования строения простых и сложных молекул, широко применяемые в органической и неорганической химии, а также в биохимии. Читатель знакомится с физикой явления, его теорией и практическими применениями. Отдельная глава посвящена методике эксперимента, причем в ней даны также основные характеристики промышленных спектрополяриметров. На конкретных примерах рассмотрены последние достижения в области использования методов при решении структурных, стереохимических и конфор-мационных проблем для широкого круга веш,еств, в частности при изучении структуры полипептидов и белков, а также синтезированных за последнее время оптически активных полимеров. [c.4]


    Рассмотрим некоторые свойства ионообменных мембран, наиболее важные с точки зрения их практического использования в электродиализе. Анализ зависимости проводящих свойств мембраны от различных факторов полезен не только как источник прямой информации, необходимой для практического применения мембран, этот анализ позволяет также проверять структурно-кинетические модели мембран и находить, таким образом, ответ на вопрос о причинах и механизме того или иного явления. [c.193]

    Из числа традиционных источников света (дуга, искра, пламя), а также некоторых других источников, применяемых в последнее время при анализе чистых веществ, дуговые источники, особенно дуговой разряд между угольными электродами, являются самыми распространенными. Это объясняется как весьма низкими значениями пределов обнаружения большого числа элементов, так и возможностью применения дуги, в первую очередь угольной, для возбуждения спектров материалов с самыми разнообразными физико-химическими свойствами, в том числе тугоплавких и труднолетучих материалов. Исследованию дугового разряда и, в частности, его аналитических возможностей посвящено огромное количество работ. В настоящее время основные явления и закономерности дугового разряда можно считать достаточно твердо установленными, хотя ряд вопросов вследствие многообразия и сложности процессов, происходящих в этом источнике, до сих пор остается не выясненным. Не касаясь здесь подробной характеристики и многих особенностей дугового разряда, описанных в специальных монографиях [838, 980], рассмотрим главный интересующий нас вопрос—о связи интенсивности излучения аналитической спектральной линии с содержанием определяемого элемента в пробе и с параметрами источника света. Установив эту связь, можно уяснить пути оптимизации условий дугового анализа с целью достижения наименьших пределов обнаружения элементов. Основное внимание будет уделено угольной дуге в соответствии с ее большим практическим значением для определения следов элементов. [c.85]

    Авторы настоящей книги поставили целью осветить наиболее существенные достижения в области теории и практики многокомпонентных полимерных систем. Книга состоит из введения, четырех глав и заключения. В них рассмотрены классификация и методы получения многокомпонентных систем на основе полимеров вопросы совместимости полимеров и межфазные явления в их смесях влияние структуры, состава и других факторов на свойства полимерных композиций. Описаны наиболее характерные и перспективные в практическом отношении системы па основе полимеров, их характеристики, области применения. [c.4]

    Таким образом, использование приемов и методов формальной химической кинетики при применении соответствующего математического аппарата в общем дает удовлетворительное совпадение между расчетными и экспериментальными данными. Это является важным доказательством принципиальной возможности использования метода формальной химической кинетики для описания поведения биологических систем. Однако степень адекватности таких математических моделей зависит от того, насколько полно учтены реакции метаболизма, протекающие в микробных клетках. Химическая кинетика не может быть рассмотрена в отрыве и без учета стехиометрических соотношений реагирующих компонентов и термодинамики. Поэтому если будут изучены все особенности реакций в микробных клетках, приводящих к увеличению биомассы популяции, а также все изменения в величинах констант скоростей реакции в цепях метаболических процессов, возникающие в ответ на увеличение биомассы популяции и изменения в составе культуральной жидкости, то принципиально возможно будет описать такое явление строго в терминах химической кинетики. Однако трудно представить, какое количество уравнений отдельных реакций потребуется в данном случае для описания такой системы и сколько машинного времени потребуется для расчета того или иного параметра. Можно полагать, что такая математическая модель потеряет все преимущества математического моделирования и в общем-то будет бесполезной в практическом отношении. С другой стороны, если пытаться описать рост популяции лишь незначительным числом избранных кинетических уравнений конкретных изученных реакций метаболизма и сводить к ним весь процесс, то всегда [c.95]

    Учитывая принятые допущения и требование согласованности математических моделей в где, для численного анализа помпажных явлений будем использовать упрощенную модель течения газа по цилиндрическим трубопроводам, а именно - модель с сосредоточенными параметрами. Применение такой модели на практике является возможным, т.к. в натурных экспериментах неоднократно было показано, что при пом-паже газ в рассматриваемой трубопроводной системе колеблется как единое целое, а акустические явления практически не оказывают влияния на характер процесса [260]. Рассмотрим эту модель более подробно. [c.426]


    Такую схему можно назвать моделью щетки . Она была впервые использована Фроммом [335] для математического описания явления бокового увода шины. Шалламах и Тарнер [332] с помощью модели щетки вычисляли мощность, потерянную при проскальзываниях в зоне контакта колеса, к которому приложена либо продольная, либо боковая сила. Они предположили, что объем истертой резины прямо пропорционален работе трения при проскальзываниях в контакте. Полученный таким способом ряд зависимостей был подтвержден экспериментально. Усилия и моменты, возникающие в модели щетки при различных видах установившегося качения колеса, вычислили Ливингстон и Браун [336, 337, 338]. Однако с точки зрения конструктора шины модель щетки представляется слишком примитивной, так как конструктора интересует также влияние различных параметров шины на износостойкость протектора, а с помощью данной модели это влияние изучить нельзя. Такой подход привел к созданию более совершенных моделей, описывающих шину более точно. К ним относятся различные модификации модели балки и модели нити , суть которых будет рассмотрена ниже. Обычно для практического применения зависимостей, полученных с помош,ью моделей щетки , нити или балки , требуется проведение натурного эксперимента для вычисления параметров модели. Например, чтобы получить зависимость боковой силы от угла увода с помощью модели щетки , необходимо экспериментально определить изменение силы от угла увода при его малых значениях, т. е. фактически получить эту зависимость экспериментально. В связи с этим возникает вопрос нельзя ли, используя какую-либо достаточно сложную модель шины, например модель балки , и вычислив параметры модели непосредственно из конструктивных параметров шины, определить искомые характеристики шины с удовлетворительной точностью, не прибегая [c.143]

    В книге рассмотрены основные положения физической химии кристаллофосфоров и лишь попутно, в порядке иллюстрации упомянуты некоторые ее практические (Применения. Следует иметь в виду, что физико-химическое исследование является весьма важным в практическом отношении даже тогда, когда оно ведется безотносительно к конкретным проблемам утилитарного характера, ибо оно вооружает нас арсеналом средств, которые необходимы для наиболее рационального решения технических и технологических задач. Сознательное применение этих средств становится возможным лишь в том случае, если технолог достаточно хорошо знаком с ними, а исследователь постоянно держит в поле зрения прикладные задачи, чтобы не пройти мимо возможности использования для их решения обнаруживаемых явлений и закономерностей. Конечно, эмпирический путь по-прежнему играет важную роль, однако в основе его в большинстве случаев лежат знания, приобретенные в ходе систематического изучения физико-химической природы кристаллофосфоров и процессов их образования, хотя используются эти знания часто подсознательно. Так или иначе, на протяжении последних десятилетий затраты усилий на изучение кристаллофосфоров не раз окупались не только улучшением их качества, но и обнаружением новых областей их применения, а также установлением закономерностей, распространение которых на другие классы твердых тел значительно расширило наши возможности управления их свойствами. Таким образом, физическая химия кристаллофосфоров прямо или косвенно играет большую роль в материаловедении в целом, т. е. в науке, изучающей основы получения 1Н0ВЫХ материалов для современной техники.  [c.318]

    Деструктивные процессы при размоле Современное состояние химии полимеров позволяет более глубоко рассмотреть те частные случаи переработки полимерных материалов, которые ранее определяли как чисто механические процессы. Сюда относится и процесс переработки волокон в бумагу, в частности стадия размола волокна. Изучение механических воздействий на полимеры показывает, что кроме деформационных явлений (от вязкого течения до вынужденноэластической деформации) наблюдается и деструкция полимерных молекул по линии главных валентностей. Механодеструкция полимеров находит практическое применение. Так, широко известен процесс пластикации каучуков путем продолжительной обработки на вальцах, что приводит- к значительному снижению молекулярного веса. Специальные исследования на мцогих- полимерах показали, что в результате механической обработки изменяется и картина молекулярно-весового распределения, причем максимум дифференциальной кривой смещается в сторону низких молекулярных весов. [c.180]

    Установлена причинно-временная последовательность процессов, происходящих в пристенной зоне течения. Определен период обновления подслоя в турбулентном пограничном слое как в безградиентном потоке, так и в потоке с продольным градиентом давления. Проведен количественный анализ явления перемежаемости в пристеночной области пограничного слоя. Рассмотрены возможные способы практического применения результатов исследования квазиупорядоченной структуры течения в вязком подслое при разработке инженерных методов расчета интегральных характеристик турбулентного пограничного слоя. [c.8]

    Практическое значение смачивания. Смачивание имеет большое значение для успешного проведения ряда важнейших технологических процессов. Например, в текстильной технологии хорошее смачивание волокна или тканей является важным условием для крашения, беления, расшлихтовки, пропитки, стирки и т. д. Совершенно понятна роль смачивания для эффективного применения инсектофунгисидов, поскольку листья растений и шерстяной покров животных всегда в той или иной степени гидрофобны. Большое значение имеет смачивание- и в типографском деле. Смачивание соответствующими жидкостями металлов и неметаллических тел ускоряет и облегчает их механическую обработку (резание, сверление, шлифовку, полировку). Бурение нефтяных скважин в горных породах также облегчается, если применять специальные бурильные растворы, содержащие смачиватели. При лужении, спайке, сварке металлов, а также склеивании различных твердых тел необходимо прежде всего хорошее смачивание их поверхности. Наконец, на явлениях избирательного смачивания основано обогащение руд —флотация. Рассмотрим в качестве примера роль [c.161]

    В первой части рассмотрены методы определения дисперсности криста.и-лических порошков, основывающиеся на использовании явления диффракционного расширения интерференционных максимумов. Эти методы условно будем называть старыми в противоположность методам, изложенным во второй части, которые будем называть новыми. Сравнивая возможности старых и новых методов, нельзя сказать, что старые методы потеряли свое значение с появлением новых. Каждый из них имеет свою область применения, свои преимущества и недостатки в том или ином конкретном случае. Прежде всего, старые методы важны при исследовании кристаллических систем, когда требуется иметь сведения об отдельных кристалликах, входящих, быть может, в состав поликристаллических агрегатов. Кроме того, в старых методах используются более простые технические средства, благодаря чему они допускают более быстрое и широкое изучение экспериментального материала. В то же время из изложенного видно, какие богатые возможности открываются для практических методов рентгеновского анализа дисперсности, использующих диффракционное рассеяние под малыми углами. Новые методы приложимы с одинаковым успехом для исследования обширного класса высокодиснерсных систем, вне зависимости от структуры их частиц. Кроме того, нри использовании новых методов рентгенографического анализа задача определения функции распределения частиц но размерам оказывается более доступной в экспериментальном и теоретическом отношениях, чем подобная же задача, основанная на использовании старых методов. Учет влияния всяких посторонних факторов в случае рассеяния рентгеновских лучей под малыми углами несравненно проще, чем при старых методах. [c.56]

    Давления, возникающие при взрыве, настолько велики, что в ряде случаев можно пренебречь прочностными и пластическими свойствами среды и силами трения по сравнению с инерционными силами. Если при этом также пренебречь сжимаемостью среды, то получается модель идеальной несжимаемой жидкости. Расчеты действия взрыва в рамках этой модели иногда дают очень хорошее совпадение с экспериментальными данными например, в теории кумуляции, которую мы рассмот рели в гл. VII. В других случаях с помощью гидроди намики удается рассчитать общие черты явления с тем чтобы в дальнейшем уточнить их, принимая во внима ние неидеальность и сжимаемость реальной среды. На конец, с помощью гидродинамических представлений удается предсказать принципиально новые практические схемы взрывания. В этой главе мы рассмотрим некоторые вопросы, связанные со взрывами и их применениями. [c.387]


Смотреть страницы где упоминается термин Практическое применение рассмотренных явлений: [c.3]    [c.286]    [c.2]    [c.2]   
Смотреть главы в:

Коллоидная химия -> Практическое применение рассмотренных явлений




ПОИСК





Смотрите так же термины и статьи:

Практическое применение пен



© 2025 chem21.info Реклама на сайте