Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аналитические реакции кальция

    В титриметрическом анализе широко используются не только кислотно-основные взаимодействия, но и другие типы аналитических реакций окислительно-восстановительные, реакции комплексообразования. Например, наше определение кальция в образце № 1 в виде оксалата можно завершить не взвешиванием, а окислительно-восстановительным титрованием оксалата перманганатом калия (перманганатометрия) по реакции [c.454]


    Так, например, ионы кальция нельзя непосредственно титровать кислотой или щелочью (гидроокись кальция довольно хорошо растворима), нельзя также титровать окислителями или восстановителями. Для объемно-аналитического определения кальция его осаждают в виде щавелевокислой соли, а затем титруют связанный с кальцием ион 204 раствором марганцевокислого калия. Таким образом, определение основано на следующих реакциях  [c.280]

    Опыт 8. Действие гексациано-([1)феррата калия на соли кальция (Аналитическая реакция обнаружения нона кальция) [c.223]

    Кроме того, качество пантотената кальция может быть определено комплексонометрическим титрованием, в настоящее время все более широко применяющимся в аналитических лабораториях. Этот метод подробно описан В. И. Кузнецовым и В. А. Михайловым (1957). Он основан на том, что динатриевая соль этилендиамин-тетрауксусной кислоты легко образует комплексы с рядом металлов, в том числе с кальцием. Конец реакции [c.150]

    Двойная калиево-кальциевая железистосинеродистая соль еще более важна. Эта соль получается как промежуточный продукт в большинстве способов получения или очистки железистосинеродистого калия. При прибавлении хлористого калия к раствору железиетосинеродистого кальция или хлористого кальция к раствору железистосйнеоодистого калия получается двойная соль в виде мелких безводных кристаллов, которые только слегка растворимы в воде. Прч 15° 100 см3 воды оастворя-ют 0,35 г двойной аммонийной соли и 0,72 г двойной калиевой соли. Растворимость этих соединений в гооячей воде заметно не увеличивается, Ферроцианиды тяжелых металлов.—Хотя немногие из этих соединений имеют значение для промышленной химии, некоторые из них представляют интерес для аналитической химии вследствие того факта, что растворимые ферроцианиды часто употребляются для открытия и определения металлов. Такие растворы ферроцианидов обычно применяются для открытия небольших количеств меди, так как этот реактив является одним из наиболее чувствительных к этому металлу. При этой реакции железистосинеродистая медь выделяется в виде красного илч красно-коричневого коллоидного осадка цвет и внешний вид несколько изменяются в зависимости от условий осаждения. [c.54]

    Большинство реакций, протекающих в растворах, обратимо. В аналитической практике часто желательно, чтобы подобные реакции шли до конца. Этого легко достичь, если в ходе реакции один из продуктов реакции непрерывно удалять из системы, например в виде газа, улетучивающегося из раствора, или в форме малорастворимого осадка, или растворимого, но малодиссоциирую-щего соединения (очень устойчивый комплекс или слабый электролит). Так, карбонат кальция растворяется в. кислотах, поскольку образующаяся в ходе реакции угольная кислота разлагаете на воду и диоксид углерода, частично улетучивающийся из раствора  [c.17]


    Доброкачественность препарата определяется отсутствием примесей железа, меди, алюминия, магния кальция и других тяжелых металлов. Все эти примеси определяются известными аналитическими реакциями. Допускается примесь мышьяка в препарате не более 0,0001%. [c.124]

    Удобно применение в качестве растворителя для конденсации кальциевой соли Р-аланина с D —)-пантолактоном смешанного метилэтилового эфира этиленгликоля реакция протекает при 25—30° С, и пантотенат кальция выделяется из реакционной смеси в аналитически чистом состоянии с выходом 94% (9J  [c.61]

    Известно, что титрование может быть осуществлено в том случае, если константа равновесия аналитической реакции больше 10 —10 т. е. g— (см. также гл. 12). Оценим с этой точки зрения, например, возможность титрования ионов кальция при pH = 5 и 10. [c.347]

    Реакции образования фторида кальция и образования НР конкурирующие. Обычно одну из них считают аналитически значимой (в данном случае — осаждение Са +), а другую — мешающей, конкурентной (взаимодействие фторид-ионов с ионами гидроксония). [c.83]

    Наряду с аналитическим методом определения свободной извести в клинкерах (см. 27 второй главы) успешно используется достаточно быстрый иммерсионный метод микроскопического анализа. Последний дает хоть и приблизительные, но достаточно удовлетворительные результаты. Сущность этого метода заключается в том, что находящуюся в клинкере свободную известь переводят в фенолят кальция и по количеству кристаллов последнего судят о наличии извести в клинкере. Реакция между фенолом и свободной известью протекает по такой схеме  [c.272]

    Простой способ синтеза дипикриламина [294], возможность обнаружения малых количеств калия и его отделения от натрия, магния, кальция и других катионов способствовали быстрому внедрению этого реагента в практику многих аналитических лабораторий. Дипикриламин применяется для обнаружения калия в минералах [296], крови [296], для гистохимических исследований [132, 575, 924]. Об этой реакции см. также [209, 545, 730, 1082, 1104, 1259, 1713, 2262]. [c.22]

    В связи с тем, что для амперометрического титрования могут быть использованы самые разнообразные химические реакции (осаждения, окисления — восстановления, комплексообразования, и иногда нейтрализации), можно подобрать соответствующий реактив для определения большей части элементов периодической системы. В этом отношении перспективы амперометрического титрования расширяются благодаря введению в практику аналитической химии различных органических реактивов. Преимущества органических реактивов в отношении их чувствительности и избирательности действия общеизвестны. Многие органические реактивы, широко применяемые в аналитической практике, например оксихинолин, диметилглиоксим, а-бензоиноксим (купрон) и ряд других, способны восстанавливаться в определенных условиях на ртутном капельном электроде, другие же, как, например, купферон или тиомочевина, окисляются на платиновом электроде. Если же титрующий реактив неспособен ни восстанавливаться, ни окисляться на индикаторном электроде, то определение можно вести, пользуясь диффузионным током восстановления определяемого иона. Очень большую роль в настоящее время играют в амперометрическом титровании различные комплексоны, значительно увеличившие возможность определения ионов электроотрицательных элементов— кальция, магния, редкоземельных элементов и т. д. [c.22]

    Некоторые твердые вещества при встряхивании с катионитом в Н-форме растворяются. Это явление впервые наблюдалось Самуэльсоном [101 ]. Опыты проводились с порошкообразным цинком, карбонатом кальция и сульфидом цинка их растворение сопровождалось выделением, соответственно, водорода, двуокиси углерода и сероводорода. Реакции между ионитами и труднорастворимыми солями нашли примен ние в аналитической химии (гл. 11.1, стр. 235). [c.53]

    Эта реакция широко используется в аналитической химии урана, так как позволяет отделять уран от редких земель, часто сопутствующих ему в природных соединениях, от алюминия, железа и кальция. [c.360]

    В 1945 г. эти вещества начал углубленно изучать цюрихский профессор Г. Шварценбах со своими сотрудниками. Им и его школой были выяснены существенные особенности образования комплексных соединений с разными комплексонами, выведены константы диссоциации отдельных комплексообразующих кислот, затем константы образования их комплексов с разными катионами, изучена кинетика реакций образования и диссоциации комплексных соединений. Также очень подробно была исследована зависимость между строением и комплексообразующей способностью комплексонов. Результаты физико-химических исследований швейцарской школы будут лишь в общих чертах приведены в последующих главах. Теоретические исследования Шварценбаха привели к возникновению первого аналитического применения комплексов в области так называемых комплексометрических титрований, из которых, например, объемное определение кальция и магния нашло широкое применение в аналитической практике. [c.6]

    Комплексные соединения некоторых катионов с комплексоном настолько прочны, что не реагируют с сероводородом. Например, в слабокислой среде, содержаш,ей уксусную кислоту, не осаждается сероводородом свинец и с трудом осаждаются медь и кадмий. В аммиачной среде не осаждаются даже следы никеля, кобальта, марганца и цинка. Трехвалентное железо при некоторых условиях дает интенсивное красное окрашивание. Однако аналитически эти реакции малоприменимы. Следует упомянуть лишь количественное отделение цинка или кобальта от никеля, основанное на реакции, вытеснения ионов кальция [80]. [c.100]


    Аналитические реакции к 1тиона кальция Са . Реакция с суль-фат-ионами. Катионы кальция образуют с сульфат-ионами 80 белый осадок малорастворимого в воде сульфата кальция, который при медленной кристаллизации выделяется в форме игольчатых кристаллов гипса — дигидрата сульфата кальция Са804-2Н20  [c.362]

    На протекапие аналитической реакции значительное влияние оказывает состояние ионов лантана в растворе. В реакцию с арсеназо III вступает гидратированный ион лантана [La (Н2О) Согласно гипотезе аналогий эта реакция начинается примерно при тех же pH, при которых начинается гидролиз ионов лантана, т. е. в слабокислой среде (рН = 3). Ионы других элементов взаимодействуют с реагентом при другой кислотности раствора, поэтому изменяя ее можно в определенной степени управлять избирательностью реакции арсеназоIII. Например, арсеназоIII реагирует с ионами кальция в щелочной среде. В кислой среде эта реакция подавляется, поэтому можно определять лантан в присутствии кальция. Избирательность арсеназо III недостаточ- [c.78]

    Заметим, что в отечесгвенной Государственной Фармакопее чувствительность фармакопейных аналитических реакций обычно характеризуют, указывая предельную чувствительность реакции (в мг или мкг) в 1 мл раствора, т. е. приводя, в сущности, значение сп в мг/мл или в мкг/мл. Так, например, чувствительность открытия катионов кальция Са реакцией с оксалатом аммония [c.22]

    Успешная попытка систематизировать многочисленные аналитические реакции с участием соединений металлов по определенной логической схеме была осуществлена немецким химиком Генрихом Розе (1795—1864) и описана в 1829 г. в его книге Руководство по аналитической химии . Разработанная им общая схема систематического качественного анализа металлов (катионов металлов — на современном языке) основана на определенной последовательности действия химических реагентов (хлороводородная кислота, сероводород, азотная кислота, раствор аммиака и др.) на анализируемый раствор и про укты реакций компонентов этого раствора с прибавляемыми реагентами. При этом исходный анализируемый раствор в схеме Г. Розе содержал соединения многих известных к тому времени металлов серебро, рт>ть, свинец золото, сурьма, олово, мышьяк кадмий, висмут медь, железо, никель, кобальт, цинк, марганец, алюминий барий, стронций, кальций, магний. Здесь химические элементы перечислены в последовательности их разделения или открытия по схеме Г. Розе. [c.35]

    Специфических аналитических реакций на ионы щелочных металлов известно крайне мало. Поэтому в ходе анализа их предварительно отделяют от всех других катионов. При анализе сложных объектов, например, силикатов, анализируемый образец разлагают смесью фтористоводородной и серной кислот, с последувщим отделением сопутствующих элементов, выщелачиванием сульфатов щелочных металлов и превращением их в хлориды. Иногда с той де целью применяют нагревание со смесью хлористого аммония и карбоната кальция с последующим удалением избытка кальция и выщелачиванием хлоридов щелочных металлов /8/. [c.29]

    Кроме кальция, глиоксаль-бцс-(2-оксианил) взаимодействует с большинством других двухвалентных металлов, в том числе с барием и стронцием. Магний и металлы подгруппы калия не мепшют определению. Перед проведением онределения кальция следует отделять металлы I—1П аналитических групп. Небольшие количества этих металлов не отделяют, а маскируют, добавляя немного цианида (в случае железа добавляют гидроксиламин) и сульфид натрия. Присутствие этих реагентов в растворе не влияет на реакцию кальция с глиоксаль-бм( -(2-оксианилом). Для предотвращения [c.199]

    Остаток осадка обрабатывают последовательно порциями горячего 30%-го раствора ацетата аммония до полного растворения сульфата свинца PbS04 (отрицательная реакция с раствором хромата калия на катионы свинца РЬ В осадке остаются сульфаты катионов третьей аналитической группы, которые переводят в карбонаты обработкой раствором соды (как было описано выше в разделе 13.2.7 при характеристике отделения и открытия катионов третьей аналитической группы), растворяют в уксусной кислоте и в полученном растворе открывают катиошл кальция Са , стронция и бария Ва . как было описано в разделе [c.343]

    Соединение цианамид, Ha N2, представляет интерес в аналитической химии как свободная кислота важной в промышленности соли, циан-амиДа кальция. Впервые полученный реакцией меж iy галоидным соединением циана и аммиаком, он являлся лабораторной редкостью до открытия в 1897 году Frank oM и Саго, что продажный карбид кальция поглощает при высокой температуре газообразный азот, образуя цианамид кальция, соединение, которое впоследствии было признано прекрасным удобрительным материалом, а также сырьем, пригодным для производства разных других азотистых соединений. Развитие этой промышленности было столь быстрым, что в настоящее время продукция цианамидной промышленности превосходит и по количеству и по стоимости объединенную продукцию всех цианистых соединений, о которых говорилось в предыгущлх отделах этой книги. [c.90]

    Пикрамин С впервые синтезирован в Институте геохимии и аналитической химии им. В. И. Вернадского АН СССР и применялся для спектрофотометрического и экстракционно-фотометрического определения Nb, Zr, Al, Си и некоторых других элементов. Пикрамин С получают азосочетанием концентрированных растворов хромотроповой кислоты с избытком диазотированной пикраминовой кислоты в присутствии гидроокиси кальция и пиридина. Пиридин применяется для стабилизации диазония пикраминовой кислоты и как катализатор реакции азосочетания В отсутствие пиридина сочетание проходит только с образованием моноазокрасителя, [c.151]

    На рис. 11 представлены кривые светопоглоиценпя реагента и его комплексов с кальцием при различных значениях pH. Максимум светопоглощения мурексида наблюдается при 537 нм [607]. Реагент сильно поглощает свет при этой длине волны, неустойчив, значение pH среды при определении кальция должно быть строго определенным. Сендел [493] отмечает, что в зависимости от условий, особенно от концентрации мурексида, светопоглощеине пропорционально концентрации кальция в течение 1—3 час. Однако другие авторы указывают на невысокую стабильность комплекса. Для получения воспроизводимых результатов оптическую плотность растворов необходимо измерять в течение первых 5 мин. после сливания растворов [50]. При определении микроколичеств кальция следует работать в щелочной среде, pH 10—13 [49, 122, 123, 252, 430, 554, 1052, 1229, 1503, 1640]. Реакция комплексооб-разования кальция с мурексидом при pH 11,3 обладает высокой чувствительностью (в 50 раз большей, чем прн pH 6 [105]). Чувствительность реакцпи при pH 11,3 составляет 0,08 мкг С-а мл и 4 мкг мл при pH 6 [105, 252]. При pH 9 чувствительность фотометрического определения кальция в виде комплекса с мурексидом 0,16 мкг Са/мл при этом не мешают значительные количества Ре, А1, Т1, Мп, М , Сг, Си, N1, 7п, РЬ, Со. Однако метод непригоден для аналитических целей из-за неустойчивости комплекса. Комплекс, образующийся при pH 6, более устойчив [106, 1314]. Окраска не меняется в течение 40 мин., по чувствительность ниже (4 мкг Са мл), кроме того реакция мало селективна. [c.84]

    Поскольку аналитические испытания, выполняемые в растворах ("мокрым" путем), представляют собой реакции между ионами, сте-иень диссоциации характеризует химическую активность электроли- ГОЕ. Например, х юроводородная кислота легко взаимодействует с ыеталличес1шм цинком и быстро разлах-ает мрамор, тогда как е более слабой уксусной кислотой эти процессы протекают гораздо медленнее. Такие соли, как сульфид 1щнка, хромат бария, оксалат кальция, легко растворяются в хлороводородной, но нерастворимы в уксусной кислоте. [c.26]

    Во многих случаях для качественной характеристики вещества можно ограничиться только визуальным наблюдением флуоресценции. Так, например, некоторые алколоиды флуоресцируют характерным светом кокаин — светло-синим, кодеин — слабо-желтым, наркотин— темно-фиолетовым и т. д. По характеру окраски флуоресценции медицинского препарата можно определить присутствующий в нем алкалоид. Соли бериллия в щелочной среде в присутствии морина дают яркую флуоресценцию желто-зеленого цвета. Этой реакции не мешают магний, кальций, цинк, мешающие определению бериллия при обычных аналитических работах. Задача качественного анализа становится значительно более сложной, когда смесь состоит из нескольких флуоресцирующих веществ, в этом случае применяются светофильтры или сочетание люминесцентного анализа с хроматографическим. Наиболее избирательные методы анализа построены на спектральном разложении света флуоресценцией и изучении спектральных характеристик флуоресценции спектрографическим методом. [c.156]

    Равномолекулярные количества диарилдитиофосфата, и непредельного соединения в течение нескольких часов нагревают на водяной бане при 80—90 °С (в случае 4,4 -дихлор дифен ил дитиофосфорной кислоты реакция протекает и при комнатной температуре). По окончании нагревания полученное масло несколько раз промывают 10%-ным водным раствором соды, водой, высушивают над прокаленным хлористым кальцием и в вакууме отгоняют непредельное соединение. Остаток растворяют в сухом бензоле, бензольный раствор пропускают через хроматографическую колонку с активной окисью алюминия. После отделения примесей, адсорбировавшихся на окиси алюминия, от раствора в вакууме отгоняют бензол и получают аналитически чистые продукты присоединения- [c.87]

    Яндер и Гофман возражают против аналитических методов, использованных Нагаи, так как 10-процентный раствор соды извлекает кремнезем также из волластонита. Поэтому они рекомендовали более точный метод отделения свободной извести от извести, связанной в дву- и трехкальциевый силикат, — титрованием -нитро-фенолом . Нагаи 5 наблюдал в безводных смесях образование трехкальциевого дисиликата при 900—1000°С, который среди продуктов реакции кристаллизовался первым. Минерализующее действие окиси железа, которая легко образует двукальциевый феррит, и глинозема, который дает трехкальциевый алюминат, имеет большое практическое значение для образования трехкальциевого силиката (см. D. III, 58). Трёмель и Хильд , применив микроскопический и рентгенографический анализ, изучили образование силикатов кальция в твердом состоянии в зависимости от продолжительности реакции и размера зерен. При выдержке свыше 20 мин. двукальциевый силикат всегда образовывался в качестве первой кристаллической фазы, которая затем вступала в реакцию с кремнеземом, что сопровождалось образованием трехкальциевого дисиликата и -монокальциевого сиЛиката. а-(псевдо)-волластонит был получен всего лишь в течение 5 мин. из очень тонко измельченной смеси карбоната кальция и осажденного кремнезема я кристобалита без каких-либо промежуточных продуктов". [c.710]

    Впрочем, некоторые аналитические опыты показали, что можно выбрать такие условия, при которых один катион количественно вытесняется из комплекса другим катионом, образующим комплекс, у которого константа нестойкости намного больше константы нестойкости первого комплекса. Так, например, в аммиачной среде можно вытеснить ион цинка из комплекса (рК 2пУ =-=16,1) ионом кальция (рКса =10,6) и количественно осадить в виде в присутствии никеля, который не вытесняется из комплекса (p/ N Y -=18,4). Подобным же образом можно количественно вытеснить кобальт из комплекса. В следующих главах будет показано, как можно использовать в анализе различную скорость реакций обмена, которые сами однако нуждаются в более подробном теоретическом исследовании. [c.156]

    Кульберг Л. [М.] Изучение аллоксана и некоторых его производных как аналитических реактивов. [Открытие тяжелых металлов]. ЖОХ, 1947, 17, вып. 6, с. 1089—1098. Резюме на англ. яз. Библ. 15 назв. 4527 Кульберг Л. [М.] Адсорбционно-топохимичес-кие реакции для идентификации фтористого кальция, бария и стронция. ДАН СССР, [c.178]

    Соли цезия и рубидия применяют в электротехнике и приборостроении при изготовлении аккумуляторных батарей, фотоэлемен-гов и люминесцентных материалов соли таллия — в производстве монокристаллов, лития — в синтезе лекарственных средств. В аналитической химии соли цезия, рубидия и таллия применяются для микрокристаллоскопических реакций на ряд катионов и анионов, а сернокислый литий — для разделения кальция и магния. [c.30]

    Общие реакции катионов II аналитической группы. Г. Действие гидрофосфатов щелочных металлов и аммония (см. табл. 7). N32HP04, К2НРО4 или (NH4)2HP04 образуют с катионами второй аналитической группы белые осадки гидрофосфатов или фосфатов магния, марганца, бария, стронция, кальция, железа (II), алюминия и висмута желтые осадки железа (III) и зеленые — хрома [c.49]


Смотреть страницы где упоминается термин Аналитические реакции кальция: [c.145]    [c.195]    [c.224]    [c.485]    [c.333]    [c.29]    [c.81]    [c.59]    [c.326]    [c.326]    [c.643]    [c.937]    [c.148]    [c.358]   
Аналитическая химия. Т.1 (2001) -- [ c.362 ]




ПОИСК





Смотрите так же термины и статьи:

Аналитические реакции

Кальций реакции



© 2025 chem21.info Реклама на сайте