Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изучение спектра комбинационного рассеяния органического соединения

    Работа 1. Изучение спектра комбинационного рассеяния органического соединения  [c.92]

    Цель работы. Изучение спектров комбинационного рассеяния органических соединений. [c.97]

    В качестве примера можно привести так называемый комбинированный метод анализа бензиновых фракций нефтей, разработанный под руководством академиков Г. С. Ландсберга и Б. А. Казанского на основе сочетания химических исследований и изучения спектров комбинационного рассеяния света [2]. Для создания новых спектральных методик идентификации веществ и для анализа сложных смесей органических соединений необходимы систематизированные данные по спектральным характеристикам индивидуальных соединений. Такие данные по ультрафиолетовым спектрам большого количества органических соединений в виде растворов в различных растворителях собраны в ряде изданий — атласов молекулярных спектров [3, 4]. Следует отметить, что подобных изданий, систематизирующих спектры кристаллов, пока нет, хотя работы в этой области успешно ведутся во многих лабораториях нашей страны и за рубежом. [c.6]


    Наибольшее применение при исследовании структурных элементов органических соединений приобрели три спектроскопических метода изучение спектров комбинационного рассеяния (Раман-спектров), инфракрасных спектров и микроволновых спектров (радиоспектроскопия). Во всех случаях изучаются спектры поглощения. Наибольшая точность, достигаемая ныне спектроскопическими методами при изучении межатомных расстояний в органических соединениях, составляет + 0,001 А, а валентные углы определяются с точностью + 15, но когда для определения атома водорода применяется замещение его на дейтерий, эта точность снижается иногда в десять раз [c.175]

    Метод исследования температурно-фазовой зависимости колебательных спектров используется для изучения межмолекулярных взаимодействий. Ранее было показано [1—2], что в спектрах комбинационного рассеяния (СКР) полярных органических соединений, содержащих грун- [c.220]

    В повседневной практике химика-органика несравненно большее значение имеют спектроскопические методы, и здесь на первое место выдвинулся (открыт в 1946 г.) метод ядерного магнитного резонанса (ЯМР), основанный на взаимодействии магнитных моментов ядер (например, ядра водорода) с внешним магнитным полем. Метод протонного магнитного резонанса дает исчерпывающие сведения о химической природе, пространственном положении и числе атомов водорода в молекуле и тем самым о ее строении. Методы инфракрасной (ИКС) и электронной спектроскопии в ультрафиолетовой и видимой областях спектра, а также спектров комбинационного рассеяния света (СКР) выявляют функциональные группы, распределение электронной плотности, пространственное строение молекул органических соединений. Метод электронного парамагнитного резонанса (ЭПР) для определения природы свободных радикалов, образующихся при химических реакциях, обусловлен взаимодействием неспаренного электрона парамагнитного соединения со внешним магнитным полем. Масс-спектроскопия (спектрометрия) путем определения массы и относительных количеств ионов, возникающих при бомбардировке электронами молекул, исследует их строение. Метод дипольных моментов устанавливает конфигурацию молекул и отчасти распределение в них электронной плотности. Повысился интерес исследователей к методу полярографии органических соединений (изучение пространственного строения, кинетики, таутомерии и т. д.). Большое значение имеет исследование термодинамических свойств органических соединений (например, при оценке их взрывчатых свойств). [c.10]


    Из рассмотрения материалов табл. 4.1 вытекает помимо всего прочего, что для установления структуры молекулы бензола методами колебательной спектроскопии потребовался только подсчет числа полос в инфракрасном спектре и спектре комбинационного рассеяния. Кстати, именно таким путем зачастую решается вопрос о характере координации атомов в комплексных соединениях, а также ионов в растворах. Между тем в самом общем случае при полном решении колебательной задачи в распоряжении исследователя оказывается весьма большая совокупность данных (частоты, форма колебаний, электрооптические параметры и т. д.), позволяющих определять не только строение и симметрию молекулы, но и судить о прочности связей, их взаимном влиянии, распределении электронной плотности и других важных характеристиках. Аналогичное положение имеет место и в других разделах спектроскопии. Так, при изучении и интерпретации электронных спектров органических, неорганических и комплексных соединений хорошие результаты дает проведение квантовохимических расчетов, расчетов на основе теории поля лигандов и т. д. По существу электронная спектроскопия является в настоящее время одним из основных экспериментальных методов, на которых базируется современная теоретическая химия. Совершенно особое значение имеет в связи с этим сочетание и совместное использование различных спектроскопических методов при решении структурных вопросов. Такой комплексный подход к проблеме открывает чрезвычайно широкие возможности и обеспечивает высокую надежность получаемой с его помощью информации о строении химических соединений. Укажем для примера, что при решении задач органической химии наилучшие результаты дает совместное использование методов инфракрасной спектроскопии, ядерного магнитного резонанса и электронной спектроскопии. [c.113]

    В серии наших работ, выполнявшихся в течение ряда лет совместно с лабораториями органической химии профессоров Р. Я. Левиной и Ю. К. Юрьева, было проведено изучение колебательных спектров и в особенности спектров комбинационного рассеяния многих новых впервые синтезированных соединений различных классов. [c.193]

    Направление научных исследований синтез органических соединений серы, фосфора, фтора, производных ацетилена, разных специальных продуктов, биологически активных веществ, биологически разлагаемых детергентов полимеризация и изучение свойств высокомолекулярных соединений (привитые сополимеры, термостойкие полимеры, ионообменные мембраны, адгезивы) разработка и внедрение новых методов синтеза на пилотных установках, методов анализа в области применения ядохимикатов улучшение техники контроля и техники безопасности исследования в области ферментов и ферментационных процессов изучение микроструктуры соединений с помощью рентгеновских лучей, электронной микроскопии, ядерного магнитного резонанса, УФ-, ИК-спектроскопии и спектров комбинационного рассеяния микроанализ физико-химические исследования полимеров (хроматография, техника адсорбции, кинетика реакций, катализ) изучение свойств твердых тел (например, углей, графитов), аэрозолей очистка воды и воздуха от промышленных загрязнений. [c.341]

    Несмотря на эти недостатки, спектроскопию КР применяли для исследования некоторых систем металл — лиганд [12—15], а также для изучения взаимодействия комплексов платины (II) с такими основаниями, как цитидин и уридин [16]. Проблема низкой интенсивности спектров КР может быть решена использованием спектроскопии резонансного комбинационного рассеяния. В ней частота рамановского возбуждения соответствует частоте полосы электронного спектра поглощения лиганда или комплекса. Впервые этот метод применили для исследования взаимодействия тетрацианэтилена с органическими электронодонорными соединениями. Полученные константы устойчивости, несмотря на сравнительно низкую воспроизводимость, хорошо согласуются с величинами, определенными другими методами [17]. В связи со снижением общей интенсивности из-за поглощения излучения образующимся комплексом в качестве внутреннего стандарта использовали полосу растворителя. [c.148]

    Лаборатория молекулярной спектроскопии и квантовой химии (руководитель Л. А. Грибов) занята разработкой автоматизированной системы идентификации органических соединений по их спектрам. Ведутся работы по инфракрасной спектроскопии и спектроскопии комбинационного рассеяния. Кроме того, проводятся исследования в области электронной спектроскопии, в частности с целью изучения состава и структуры комплексных соединений переходных металлов. Важное место в работе этой лаборатории занимают расчетные методы квантовой химии. [c.201]


    В пространстве. Поэтому для объяснения свойств растворов требуется изучить распределение частиц в растворе, или внутреннее строение раствора, и силы, действующие между частицами. С этой целью приходится обращаться к другим методам химии и физики. Так, например, препаративные методы неорганической, органической и аналитической химии позволяют в ряде случаев установить наличие в растворах химических соединений между компонентами, что указывает на большую роль химических сил в таких растворах и проливает свет на их строение. Исследование спектров комбинационного рассеяния и спектров поглощения света также позволяет судить о наличии или отсутствии химических соединений в растворах. Изучение интенсивности и степени деполяризации молекулярного рассеяния света дает сведзния о характере пространственного распределения частиц в растворах. Еще более детальные данные о взаимном расположении частиц получаются из измерений рассеяния рентгеновских лучей и т. д. [c.202]

    Спектры комбинационного рассеяния были открыты в 1928 г. одновременно Мандельштамом и Ландсбергом в СССР и Раманом в Индии. Первоначально эти спектры были применены для изучения строения органических соединений главным образом путем анализа характеристических частот, но со второй половины 40-х годов, преимущественно благодаря работам Герцберга и Стойчева в Канаде, при помощи Раман-спектров были получены исключительно интересные сведения также о длинах связей и валентных углах в важнейших простейших представителях углеводородов различных классов. [c.176]

    Положение спутников в спэктре рассеянного света (их частоты ) и их интенсивности определяются строением молекул, химиче -скими связями и служат удобным методом изучения этих величин. Спектральный анализ по спектрам комбинационного рассеяния нашел широкое применение для анализа сложных органических соединений. [c.141]

    Изучение инфракрасных спектров и спектров комбинационного рассеяния [13, 18] непредельных органических соединений IV группы показало, что при переходе от кремния к олову общий характер изменений спектра состоит в том, что резко возрастает интенсивность линий, связанных с колебаниями, в которых принимает участие атом металла. Интенсивность линий, соответствующих кратной связи, также возрастает приблизительно в геометрической прогрессии (1 2 4 8), в то время как для остальных линий почти не изменяется ни частота, ни интенсивность. Это свидетельствует, по мнению авторов, об усилении взаимодействия атома металла со связью С=С в Р-положении к нему по мере перехода от кремния к олову. Особенно четко это показано Шорыгиным и Петуховым при исследовании вакуумных ультрафиолетовых спектров поглощения соединений (СНз)зЭСНгСН—СНз, где батохромный сдвиг полосы поглощения в видимую область резко возрастает в следующем порядке С 51 <С Ое << 5п. [c.131]

    Ряд особенностей тонкой структуры органических соединений — изгибание цепейг и параллельное расположение их в молекулах — дает возможность установить изучение парахоров веществ благодаря новому методу вычисления парахоров, предложенному в 1941—1945 гг. Гиблингом [ ]. В работах Б. А. Арбузова с В. С. Виногра- довой [ 7] и Л. М. Гужавиной [8,8] на ряде примеров было убедительно показано,-что выводы о тонкой структуре органических веществ, сделанные на основании изучения их парахоров, совпадают с данными других физических методов исследования (вискозиметрии, спектров комбинационного рассеяния света, рентгенографии,, диффракции электронов и т. д.). После этих работ парахор стал одним из удобнейших критериев для изучения строения органических веществ. [c.223]

    Среди современных методов исследования строения органических соединений и их анализа значительную роль играют физические методы, в частности оптические. Особое значение среди этих последних приобретает метод рамап-спектросконии (комбинационное рассеяние света) становящийся в последние годы одним из очень важных приемов изучения молекул. Ряд структурных задач теоретической органической химии и многочисленные сложные задачи анализа смесей органических соедине-пый, включая технически важные вопросы анализа моторного Т01плива, могут успешно разрешаться при помощи метода комбинационного рассеяния света. Мы имеем в этом методе настоящий прием молекулярного спект-трального анализа как качественного, так и количественного. Значение его особенно возрастает в связи с тем обстоятельством, что возникновение спектра комбинационного рассеяния света связано с возбуждением лишь ротационных и низких (обычно первого) колебательных уровней и поэтому не сопровождается расщеплением даже весьма несто11ких молекул и радикалов. Таким образом, метод комбинационного рассеяния и в этом отношении не только не уступает, но даже превосходит обычные методы инфракрасной спектроскопии, не говоря уже об огромных преимуществах его в смысле относительной аппаратурной простоты, скорости получения результатов, повышения разрешающей снособности и т. д. [c.159]

    С начала 30-х годов XX в. для открытия и определения многих химических соединений (особенно органических веществ) стал применял ь-ся метод комбинационного рассеяния (КР) света — так называемый ра-ман-эффект . Эффект комбинационного рассеяния света открыли в 1928 г. независимо друг от друга Ч. В. Раман (совместно с К. С. Кришиа-ном и Венкатесвараном) в Индии при изучении спектра рассеяния жидкого бензола и отечественные ученые Г. С. Ландсберг и Л. И. Мандельштам — при исследовании спектров рассеяния кристаллов. Заметим, что эффект КР света был предсказан теоретиками и обоснован еще до его экспериментального открытия. Так, Е. Ломмель в 1871—1878 г.г. развил математическую теорию рассеяния света ангармоническим осциллятором, из которой следовало, что в спекфе его рассеяния могут проявлять- [c.45]

    Для спектрального изучения люминесценции лучше всего взять светосильный прибор, подобный обыкновенно использующимся для исследования комбинационного рассеяния, например призменный Хильгер (светосила 1 4), Джарелл-Аш (1 6,3) с дифракционной решеткой и Штейн-хейль GH (1 3) [103, 108]. Так как большинство спектров люминесценции органических соединений состоит из более или менее широких полос, то редко требуется высокое разрешение, даваемое менее светосильным спектрографом. Очень удобным для исследовательской работы является небольшой прибор с кварцевой оптикой Хильгер , который имеет светосилу 1 8 и фотографирует область от 2000 до 8000 A на пластинку 8,2 X 10,8 см. Сама фотопластинка или отпечаток с нее вполне подходят для целей качественного анализа или в тех случаях, когда требуется только определить длины волн основных групп полос в спектре. Если же требуется более детальный анализ, то может быть сделана микрофотограмма с помощью неавтоматического или автоматического регистрирующего микрофотометра. [c.89]


Смотреть страницы где упоминается термин Изучение спектра комбинационного рассеяния органического соединения: [c.643]    [c.576]    [c.172]    [c.53]    [c.599]    [c.51]    [c.57]    [c.265]   
Смотреть главы в:

Практикум по физической химии изд3 -> Изучение спектра комбинационного рассеяния органического соединения

Практикум по физической химии Изд 4 -> Изучение спектра комбинационного рассеяния органического соединения




ПОИСК





Смотрите так же термины и статьи:

Комбинационное рассеяние

Спектры комбинационного рассеяния

спектры соединения



© 2025 chem21.info Реклама на сайте