Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дипольных моментов метод

    Прежде чем рассмотреть электрический резонансный метод, остановимся очень кратко на определении дипольного момента методом молекулярного пучка. [c.65]

    ОПРЕДЕЛЕНИЕ ДИПОЛЬНЫХ МОМЕНТОВ МЕТОДОМ МОЛЕКУЛЯРНОГО [c.251]

    Определение дипольных моментов методом молекулярных пучков. Для [c.14]

    Определение дипольных моментов методом молекулярного пучка. Для определения дипольного момента может быть использован метод отклонения молекулярных пучков в электрическом поле. Молекула, движущаяся вдоль направления ОХ в неоднородном электрическом поле ( , которое так же, как и его градиент, перпендикулярно ОХ, подвергается действию силы [c.23]


    В проведенных до сего времени вычислениях дипольных моментов методом векторного сложения были исключены группы с изогнутым строением заместителей, поскольку такая изогнутость в сочетании со свободным вращением не позволяет сделать определенных заключений о форме молекулы, а следовательно, и о направлении векторов дипольных моментов. При этом приходится еще считаться с возможностью одновременного существования различных форм молекул с разными дипольными моментами, как это в дальнейшем (см. стр. 92) будет исчерпывающе показано на примерах jn-хлор-фенола и диэтилового эфира гидрохинона. [c.88]

    Не останавливаясь на различных методах определения которым посвящен ряд статей [18, 19], отметим лишь, что можно найти по величинам энтропий при известных собственных частотах колебаний и по данным о зависимости дипольного момента от температуры. [c.191]

    Расчетный дипольный момент молекул сорбированной воды в этом случае получается выше, чем дипольный момент молекулы воды в парообразной фазе [213]. В то же время, по данным исследований методом спинового эха, подвижность протонов связанной воды на два порядка ниже, чем воды в свободном объеме [214]. [c.66]

    Наиболее удобными методами изучения кластеров (НгО) (л>2) являются различные варианты масс-спектроскопической техники [363]. Естественно, что чем ниже температура эксперимента, тем более крупные кластеры (с большим п) удается наблюдать. Так, удалось зарегистрировать в спектре пик, соответствующий п= [368] и /г = 36 (температура 77 К) [369]. При температуре жидкого азота были зарегистрированы положительно заряженные кластеры с л от 1 до 40 [370]. В работе [371] удалось наблюдать отрицательно заряженные кластеры, содержащие вплоть до 50 молекул воды. В этой работе была сделана попытка изучить структуру этих кластеров методом электронной дифракции. Авторы приходят к выводу, что по своей структуре эти кластеры не являются фрагментами кристаллов льда, а аморфны. Были также оценены дипольные моменты кластеров с л от 2 до 6 дипольные моменты кластеров с п = = 3- 6 близки к нулю, что, по мнению авторов, свидетельствует о циклическом характере их структуры [361]. Много экспериментальных данных о существовании и свойствах кластеров, состоящих из нескольких десятков молекул воды, приводится в работе [372]. [c.133]

    Для определения величины <р,/Л1>, входящей в уравнение (15.4), необходимо проделать следующие операции 1) для фиксированного смещения зарядов (кроме электронов) молекулы воды, определяющих ее дипольный момент р/, найти среднее значение дипольного момента всей среды 2) учитывая различные возможные смещения зарядов сорбированной молекулы, рассчитать среднюю величину Ввиду сложности подобных расчетов в теории диэлектриков используется приближенный метод Кирквуда. Согласно этому методу, учитывается только короткодействующее взаимодействие между ближайшими соседними молекулами, и дипольный момент М определяется как векторная сумма дипольного момента молекулы и среднего значения суммы моментов ближайших соседей для фиксированного ц. Для жидкости с учетом эквивалентности всех молекул и направлений их дипольных моментов теория Кирквуда позволяет получить следующее выражение  [c.251]


    Для некоторых реакций можно избавиться от распределения по скоростям, применяя метод скрещенных молекулярных пучков (рис. 22-2). Вместо реакций между молекулами, диспергированными в растворе или газе, пропускают сквозь друг друга пучки молекул или ионов в вакуумной камере, где присутствует пренебрежимо малое число других молекул. Молекулы в пересекающихся пучках реагируют между собой и рассеиваются от точки пересечения пучков. За образованием продуктов реакции и непрореагировавшими исходными молекулами можно наблюдать по зависимости от угла рассеяния, пользуясь подвижным детектором, которьш находится внутри камеры. Удобство такого метода заключается в том, что селекторы скорости позволяют ограничить пучок молекулами, скорости которых находятся в выбранном небольшом интервале значений. Сведения о зависимости количества образующегося продукта реакции от угла отклонения, или рассеяния, дают намного больше данных о процессе реакции. Проблема ориентации сталкивающихся молекул остается и в исследованиях со скрещенными пучками, но можно представить себе эксперименты, в которых этот фактор также удается контролировать. Если пропустить молекулярные пучки перед точкой пересечения через сильные магнитные или электрические поля, они придадут большинству молекул в каждом пучке одну преобладающую ориентацию в пространстве при условии, что молекулы обладают магнитными или дипольными моментами. [c.356]

    Если энергия возмущения, характерная для данного метода, меньше энергии расщепления колебательных уровней, то наблюдается делокализация ядерной плотности по эквивалентным минимумам. Молекула аммиака в этом случае будет иметь симметрию Dzh (тригональная бипирамида) и нулевой дипольный момент. [c.117]

    Измерив 8 при двух температурах можио определить с помощью уравнения Ланжевена — Дебая а и Есть и другие методы экспериментального определения а. Дипольные моменты некоторых молекул приведены в табл. 1.9. [c.71]

    Удельные сопротивления полимеров и их электрическая прочность (сопротивление пробою) еще недостаточно изучены связь их с другими физическими и химическими свойствами полимеров, а также с особенностями их внутреннего строения еще недостаточно выяснена. Наоборот, по диэлектрической проницаемости и диэлектрическим потерям полимеров имеется теоретический и экспериментальный материал, который дает возможность уже в настоящее время изучать связь этих свойств с другими свойствами полимеров. Измерение диэлектрической проницаемости является основным методом определения дипольного момента молекул и изучения их полярной структуры (см. 23). В связи с этим из пяти названных выше технических характеристик диэлектрических свойств остановимся на первых двух. [c.594]

    Метод определения дипольных моментов веществ основан на нахождении концентрационной зависимости диэлектрической проницаемости е и плотности d растворов  [c.121]

    Как способ отождествления различных изомеров колебательная спектроскопия очень широко применяется в органической химии. Она позволяет установить для данного вещества существование не только мономеров, но и отдельных конформеров. Так как время жизни данного конформера (Ш с) в сотни и тысячи раз больше периода колебаний (10 —10 с), он успевает проявить себя в колебательном спектре. Измерение зависимости интенсивности полос двух конформеров от температуры позволяет определить теплоту превращения одного из них в другой, т. е. относительную их устойчивость. Однако далеко не всегда одни только колебательные спектры достаточны для однозначного определения равновесной конфигурации молекулы. Обычно должна использоваться совокупность данных нескольких взаимозаменяющих методов исследования, например вращательной и колебательной спектроскопии, электронографии, измерения дипольных моментов и др. [c.176]

    Определение дипольного момента проводили, измеряя диэлектрическую проницаемость разбавленных растворов веществ методом разбавленных растворов Дебая [126]. Этот метод основан на допущении, что в предельно разбавленных растворах молекулы полярного вещества должны свободно ориентироваться. Диполь-ный момент рассчитывали по формуле [c.35]

    Дипольные моменты. Дипольный момент — это вектор, являющийся мерой смещения заряда. Он определяется как произведение заряда на расстояние в диполе. Согласно теории МО Хюккеля я-электронную плотность атома т можно определить по уравнению (1,110). В углеводородах с сопряженными связями при расчете дипольных моментов по методу МОХ следует учитывать один положительный заряд у каждого атома углерода, так как число углеродных атомов равно числу я-электронов. Следовательно, асимметрия л-электронной плотности равна  [c.41]


    Распределительная хроматогра -фин. Этим методом можно успешно отделить нефтяные сернистые соединения от парафино-нафтеновых углеводородов. Исследуемые нефтепродукты пропускают с определенной скоростью через твердый активированный адсорбент. На адсорбенте задерживаются кислородные и сернистые соединения, характеризующиеся большим дипольным моментом. После этого их извлекают десорбентом — вытеснительной жидкостью. Это, как правило, метанол или этанол и их смеси с бензолом, отличающиеся значительным дипольным моментом. Вытесненные с поверхности адсорбента соединения отделяют от растворителя разгонкой в мягких условиях (в токе инертного газа). Разделить ароматические углеводороды и сернистые соединения практически невозможно, так как величины адсорбционной способности сернистых соединений и ароматических углеводородов близки между собой. [c.83]

    Поляризация молекул диэлектрика. Поляризация ориентации, атомная и электронная. Диполи постоянные (жесткие) и наведенные (индуцированные). Дипольный момент. Методы его определения. Уравнение Клаузиуса-Мосотти. Уравнение Лоренц-Лорентца. Удельная и молекулярная рефракции. Аддитивность рефракции. Зависимость поляризации и рефракции от температуры. Определениг структуры молекул по рефракции. [c.169]

    Наконец, существует непосредственный метод определения дипольного момента — метод молекулярного пучка. При этом создают пучок молекул исследуемого вещества в пустоте. Молекулы движутся прямолинейно и, ударяясь в стенку, конденсируются на ней, оставляя след . Если такой молекулярный пучок проходит через электрическое поле, то при отсутствии постоянных дипольных моментов никакого изменения в ширине пучка не будет при прохождении же через электрическое поле пучка дипольных молекул происходит расширение пучка, так как в нем имеются дипольные моменты с различной ориенти-роакой в пространстве, и под действием электрического поля молекулы отклоняются от своего пути в различных направлениях. Чем больше расширение пучка, которое легко измерить по его следу на стенке, тем больше дипольный момент молекулы. Основываясь на этих соображениях, при помощи довольно сложных формул удается вычислить дипольный момент по рас- ширению молекулярного пучка. [c.173]

    Теплоты образования комплексов определяли методом калориметрического титрования [2], дипольные моменты — методом диэлектрометри-ческого титрования [3]. [c.134]

    В настоящей главе не рассмотрены способы определения дипольного момента методом молекулярного пучка [52, 53] или из поглощения радиоволн в диэлектриках [54], поскольку для большинства молекул эти методы дают менее точные результаты, трудны в работе, а иногда просто ненрименимы. Для точных определений дипольного момента изолированной молекулы в условиях, когда она свободна от воздействия окружающей среды, всегда лучше измерять диэлектрическую проницаемость вещества в газообразном состоянии. В этом случае наиболее удобным методом измерений является метод биений. Поскольку большие требования к точности сильно затрудняют измерения в газах и поскольку низкое давление паров большого числа веществ или их термическая неустойчивость исключает возможность измерений в газах, подавляющее большинство измерений дипольных моментов проводится с растворами полярных соединений в неполярных растворителях. Для таких измерений метод биений оказался вполне удобным и точным, причем установка в этом случае получается проще, чем для газов, за счет устранения всяческих специальных предосторожностей, необходимых для работы с газами. При измерениях растворов и жидкостей можно применять также и метод резонанса. Очень хорошие результаты могут быть получены с подробно описанным выше весьма простым вариантом резонансной схемы. В особом случае исследования жидкостей, обладающих значительной электропроводностью, необходимо пользоваться мостиком емкостей или схемой твин-Т . Последние дают удовлетворительные результаты также при применении их к непроводящим жидкостям. [c.52]

    И конфигурация кажется фиксированной. Предположение о том, что у кислот и сложных эфиров существуют связи особого характера в карбоксильной и в карбалкоксильной группах, следует также из невозможности вычислить дипольные моменты этих групп путем векторного сложения дипольных моментов связи /лс-о, / о-н и /io.R, если при вычислении принимают транс-конфигурацию групп. Результаты векторного сложения гораздо лучше согласуются с ццс-конфигурацией (для которой получается дипольный момент, близкий к единице) кислот и сложных эфиров и с транс-конфигу-рацией (для которой вычисляется дипольный момент, равный приблизительно 4,4) лактонов. Теоретически из рассмотрения мезомерии карбоксильной и карбоксалкильной групп можно ожидать наличия особого характера связей в этих группах, что заставляет считать неправильным вычисление дипольных моментов методом векторного сложения (см. стр. 382, 383). [c.98]

    Эта формула дает лучшую сходимость с опытом, чем формула Борна. Метод Ван-Аркеля и де-Бура отличается от борновского тем, что в нем процесс гидратации разделяется на два этапа. Энергия образования первого гидратного слоя вычисляется на основе взаимодействия между газообразным ионом и полярными молекулами воды, т. е. взаимодействия, происходящего вне сферы жидкой фазы. Такой способ расчета позволяет учесть свойства отдельных молекул воды (их дипольные моменты, поляризуемость и т. п.). Поэтому при рассмотрении процесса образования первого гидратного слоя, где эти свойства особенно важны, появляется возможность отказаться от представления о воде лишь как о среде с определенной диэлектрической пропицаемостью. Поскольку на второй стадии цикла в воду вносится ион, уже частично гидратированный, с радиусом, зиачителглю большим, чем радиус исходного иона, то одна и та же ошибка в его определении здесь будет иметь меньи ее значение. Возмуихения, вызванные введением такого гидратированного иоиа в воду, будут меньшими, и представление о воде как о непрерывной среде с определенной диэлектрической проницаемостью, а следовательно, и применение формулы (2.14) оказываются более оправданными, чем в методе Борна. Молекулу воды Ван-Аркель и де-Бур представляют себе в виде с([)еры с радиусом 0,125 нм и электрическим моментом диполя, равкым 6,17-10 ° Кл.м (1,85 0). [c.59]

    Для описания межмолекулярного взаимодействля в расчетах методом Монте-Карло использовали потенциал Роулинсона [343]. В модели Роулинсона (Р УЬ) на атомах водорода воды располагаются положительные заряды, отрицательные заряды помещаются на линии, проходящей через атом кислорода перпендикулярно плоскости молекулы. Дипольный момент молекулы в этой модели равен 1,85 Д. Энергия связи димера воды 22,6 кДж/моль при равновесном расстоянии 0,269 нм. [c.122]

    На примере гетероядерных двухатомных молекул можно проиллюстрировать необходимость в надлежащей орбитальной симметрии для получения максимального перекрывания и взаимодействия, а также сооткошекяе между энергетическим соответствием атомных орбиталей и ионным характером образующейся связи. В качестве метода измерения ионного характера связи можно обсудить дипольные моменты. [c.576]

    Из этих данных впдио, в частности, что для молекулы аммиака электронографическим методом определяется структура С30, а метод ЯМР или исследование молекулярных пучков свидетельствуют о более высокой симметрии Озн- В первом случае молекула NH3 обладает ненулевым постоянным дипольным моментом, во втором случае он отсутствует. [c.120]

    Исследоваг1не рефракции (преломления) света, определения дипольного момента, поляризации, магнитной проницаемости также дают ценные сведения о соответствующих свойствах молекул. В последнее время быстрое развитие получили методы, основанные на тонком исследовании магнитных свойств веществ в особых условиях при работе в микроволновой области радиочастот. [c.89]

    При исследовании комплексов широко применяются спект-рофотометрия, ядерный магнитный резонанс, метод дипольных моментов, калориметрия и криоскопия. Рассмотрим, какой вид имеет уравнение (2) для каждого из этих методов. [c.121]

    Взаимодействие НХ с катализатором протекает по обратимой реакции с высокой скоростью, при этом образуются комплексы с переносом заряда или ионные пары, что подтверждается методами УФ- и ИК-спектроскопии, изменениял дипольного момента и давления паров (подробнее см. гл. 4) последующее образование (т-комплексов в результате взаимодействия их с аренами является более медленной стадией. Большое влияние на дальнейшее превращение ст-комплексов оказывает основность растворителей. Действительно, если реакцию проводить без растворителей или со слабоосновными растворителями, то образующиеся алкилбензолы, обладающие более основными свойствами, чем исходный бензол, накапливаются в виде комплекса [c.45]

    Органические соединения класса пиридинов широко используются в качестве ингибиторов коррозии в сероводородсодержащих минерализованных коррозионных средах. В последнее время находят широкое применение их четвертичные соли, такие как хлористые аминопиридины. Однако не все соединения проявляют достаточную эффектив1юсть в одних и тех же условиях. Для установления зависимости степени заш иты стали индивидуальными соединениями от квантово-химических параметров последних были проведены расчеты методом пренебрежения двухатомным перекрыванием с помощью программы АМРАС таких параметров как дипольный момент молекул, энергии на верхних заполненных молекулярных орбиталях (ВЗМО) и на нижних свободных молекулярных орбиталях (НСМО), максимальный и минимальный заряды на атомах. [c.289]

    Уравнения (4.66) — (4.68) для энергии взаимодействия справедливы и в классической и в квантовой механике. Различие состоит лишь в расчете моментов (г и 0, причем эти моменты могут быть вычислены только квантовомеханическими методами, тогда как с помощью классической механики этого сделать нельзя. Другими словами, плотность заряда р должна быть найдена с помощью квантовомеханических расчетов. Практически такие расчеты трудно выполнить с желаемой точностью, поэтому предпочтение отдается экспериментальному определению моментов. Дипольный момент можно определить по диэлектрическим свойствам или, например, по эффекту Штарка в микроволновом спектре. Молекулярным дипольным моментам посвящена обширная литература компактный обзор по этому вопросу приведен в работе Уэтерли и Уильямса [57]. Определить экспериментально квадрупольный момент гораздо сложнее. Для этого используются такие обусловленные давлением эффекты, как уширение микроволнового спектра и поглощение в инфракрасной части спектра. Обзор всех этих методов приводится в работе Букингема [55]. Около половины известных в настоящее время [c.196]

    Таким образом, определив при помощи метода МОХ распределение я-электронной плотности и зная геометрию молекулы, можно вычислить дипольный момент, обусловленный распределением я-элек-тронов. Расчеты по методу МОХ дают завышенные значения диполь-ного момента. [c.42]

    Наиболее достоверные данные о дипольных моментах можно получить, если проводить исследование вещества в газообразной фазе при очень низких давлениях, когда расстояния между молекулами настолько значительны, что электростатическое взаимодействие между ними почти отсутствует. Из всех известных методов наиболее широкое распространение получили методы определения дипольных моментов, основанные на измерении диэлектрической проницаемости паров и разбавленных растворов полярных веществ в бездипольных растворителях. Большинство экспериментальных значений дипольных моментов получены при помощи этих методов, в основе которых лежит статистическая теория полярных молекул, разработанная Дебаем. [c.54]

    Ряд гетероатомных соединений имеет характерные величины дипольных моментов дналкил- и арилсульфиды 5,177—5,344 X X 10 ° Кл-м, алкил- и диалкилтиофаны 6,179—б, 212-10 ° Кл-м, тиофены 1,870-10 ° Кл-м, что установлено опытами с индивидуальными сульфидами [254]. Процессы комплексообразования в зависимости от строения нефтяных сульфидов могут быть изучены методами криоскопического и диэлектрометрического титрования. Сульфиды, взаимодействуя с галогенидами металлов, образуют устойчивые комплексы с хлоридом алюминия и галлия 1 1, тетрахлоридами олова и титана — 1 2. Тетрахлориды олова и титана практически не образуют комплексов с циклическими сульфидами, содержащими углеводородные радикалы в а-положении по отношению к атому серы, с диалкилсульфидами, углеродная цепь которых имеет разветвленное строение в а-положении, и с арилсульфидами. Дипольный момент взаимодействующих с тетрахлоридом олова циклических сульфидов находится в пределах 16,33—17,33 Кл-м. Дополнительную характеристику структуры молекул сульфидов дают калориметрические исследования. Экспериментально определяемые значения теплот образования комплексов сильно зависят от строения, сульфидов и составляют 50—55 кДж/моль для диалкилсульфидов и 29—34 кДж/моль для циклических сульфидов. [c.143]

    Перед измерениями химически чистые вещества подвергались перегонке, осушались хлористым кальцием и снова перегонялись. Степень чистоты объектов исследования контролировалась хроматографически. Результат анализа показал, что содержание исследуемых изомеров в обравгхах не ниже 99%, концентрация полярных примесей незначительна. Из всех полярных 1фимесей особого внимания заслуживают следы воды, так как вода обладает сравнительно малым молекулярным объемом и большим электрическим дипольным моментом молекул. Это приводит к тому, что небольшие примеси воды могут заметно влиять на величину " образцов. Анализ на присутствие следов воды в исследованных жидких алканах проводился по методу Фишера, Концентрации воды оказались ниже концентраций, соответствующих насыщенным растворам. Учитывая это, можно полагать, что вода находится в растворенном состоянии, а не в виде эмульсии /6/. Следовательно, [c.126]

    В начале шестидесятых годов О. Р. Лайд, определяя дапольный момент с помощью эффекта Штарка, нашел, что его величина для изобутана равна 0,132 В /88/, а для н-пропана - 0,0830/89/. Следует отметить, что определение электрического дипольного момента по Штарк-эффекту дает возможность измерять значения дипольного момента порядка 0,1-0,21) с высокой точностью (до 0,2%). Важно, что дпя метода Штарка несущественно даже значительное загрязнение газов, так как дпя измерения выбираются лишь те линии поглощения, которые принадлежат исследуемой молекуле /90/. Стало ясно, что молекулы алканов обладают постоянным электрическим дЬпольным мо-мштом. Постоянный дипольный момент молекул алканов существует благодаря неполной взаимной компенсации дипольных моментов отдельных С-С-и С-Н-связей /87/. [c.142]

    Условия, при которых дипольный момент у молекул предельных углеводородов должен отсутствовать, исключительно жесткие, В общем случае необходимо, чтобы 1) все валентные углы были тетраэдрическими 2) ни одна из С-С ч вязей не обладала дипольным моментом З) дипольные моменты всех С-Н-свяйей независимо он их положения в молекуле были одинаковы. В действительности ни одно из этих условий не выполняется. Известно, что валентные углы в алканах могут отклоняться от тетраэдрических на +3° /91/. Еще более существенна неэквивалентность С-Н, а также С-С-связей в молекулах алканов. Это говорит о том, что молекулы алканов должны иметь постоянный дипольный момшт. Однако экспериментальное определение методом Штарка дипольных моментов высших алканов до сегодняшнего дня не представляется возможным ввиду сложности расшифровки спектров. [c.142]

    Е . Татевский с сотр., исходя из экспериментально определенных величин дипольных моментов н-1фопаиа и изобутана, разработала метод расчета дипольных моментов молекул нормальных и разветвленных алканов /92-95/. В методе предполагается, что дипольный момент молекулы алкана можно представить как векторную сумму моментов отдельных связей  [c.142]


Смотреть страницы где упоминается термин Дипольных моментов метод: [c.75]    [c.60]    [c.99]    [c.147]    [c.79]    [c.141]    [c.227]    [c.41]   
Установление структуры органических соединений физическими и химическими методами том 1 (1967) -- [ c.453 ]

Установление структуры органических соединений физическими и химическими методами Книга1 (1967) -- [ c.453 ]




ПОИСК





Смотрите так же термины и статьи:

Второй раздел. Методы определения электрических дипольных моментов молекул

Глава И Природа дипольного момента и методы его определения Природа дипольного момента

Дипольные моменты связей и структура молекул. Методы валентных связей (ВС) и молекулярных орбиталей (МО)

Дипольные моменты электрический, метод определения

Дипольный момент

Дипольный момент методы расчета

Другие методы, используемые для определения дипольных моментов

Конформационное исследование методом дипольных моментов

Метод моментов

Методы измерения дипольных моментов

Методы определения дипольных моментов

Определение дипольного момента по температурной зависимости поляризации газообразных веществ (первый метод Дебая)

Определение дипольных моментов в разбавленных растворах (второй метод Де.бая)

Определение дипольных моментов в разбавленных растворах (второй метод Дебая)

Первый метод Дебая — определение электрического дипольного момента молекул паров веществ

Расчетный аппарат метода дипольных моментов Моменты связей и групп

Теория размеров и дипольных моментов макромолекул. Общие методы

Электрический дипольный момент методы измерения

Электрический резонансный метод определения дипольного момента



© 2025 chem21.info Реклама на сайте