Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Учение о солях

    Как было найдено русским ученым Г. И. Гессом (1842), тепловые эффекты химических реакций в растворах электролитов также обнаруживают известные аномалии. Так, теплоты нейтрализации сильных кислот сильными основаниями постоянны и не зависят (или почти не зависят) от природы кислоты и основания, несмотря на то, что в результате их смешения образуются совершенно разные соли. Например, при нейтрализации раствора азотной кислоты раствором гидроксида калия [c.37]


    В системе СИ единицей длины является метр (м), который содержит 10 дециметров (дм) или 100 сантиметров (см). Единицей объема является кубический метр (м ). Для лабораторных измерений объема кубический метр-слишком большая величина, и поэтому принято использовать в качестве единицы измерения объема I л, который, согласно системе СИ, определяется как 1 дм кроме того, используется еще меньшая единица измерения объема -1 миллилитр (мл), который равен 1 см . Строго говоря, литр - чужеродная единица в системе СИ, но ею так удобно пользоваться и она так укоренилась в практике, что от нее трудно отказаться. Прежде ученые чаще всего пользовались миллилитрами для измерения объемов жидких тел, а кубическими сантиметрами-для измерения объемов твердых веществ. Поэтому объем раствора хлорида натрия обычно измеряется в миллилитрах, а плотность поваренной соли (кристаллического хлорида натрия) указывается в граммах на кубический сантиметр, т.е. в г см В данной главе мы будем применять только миллилитры, но впоследствии будем пользоваться и кубическими сантиметрами, если это окажется более естественным. Напомним, что 1 м = = 1000 л, 1 л = 1000 мл и 1 мл = 1 см . Дополнительные сведения о системе СИ можно найти в приложении 1. [c.77]

    Наука о коррозии и защите металлов изучает взаимодействие металлов с коррозионной средой, устанавливает механизм этого взаимодействия и его общие закономерности. Своей конечной практической целью учение имеет защиту металлов от коррозионного разрушения при их обработке и эксплуатации металлических конструкций в атмосфере, речной и морской воде, водных растворах кислот, солей и щелочей, грунте, продуктах горения топлива и т. д. [c.10]

    Каталитическое восстановление углеводов впервые было осуществлено в 1912 г. В. Н. Ипатьевым. Вначале для этой цели применялись металлы платиновой группы, но их высокая стоимость заставила исследователей начать поиски новых, более дешевых катализаторов. В этой связи учеными разных стран были изучены никелевые и медные катализаторы, полученные восстановлением их солей и нанесенные на различные носители (кизельгур, окись хрома, окись алюминия и др.). В связи с тем, что указанные катализаторы имели сравнительно невысокую активность, предпринимались попытки улучшить их качество за-счет введения различных промоторов, а также испытывались новые формы катализаторов, в частности сплавные катализаторы. Последние отличаются простотой приготовления и повышенной стабильностью. Разви- [c.22]

    Пол,учение нитрилов ароматических к и с л о т. Из солей диазония в присутствии цианистой меди могут быть получены нитрилы ароматических кислот  [c.109]


    Русский ученый Л. А. Чугаев в 1905 г. опубликовал работу, в которой описал реакцию взаимодействия д-диоксимов с ионами никеля. Он обнаружил, что при взаимодействии соли ни- [c.11]

    Необходимо особо подчеркнуть практическое значение водных растворов, так как подавляющее большинство процессов в природе совершается в водной среде. Водные растворы играют исключительно важную роль во всех процессах, протекающих в почвах, а также в животных и растительных организмах. Все природные воды представляют собой растворы различных солей. Различные биологические жидкости (кровь, лимфа, клеточный сок и т. п.) также являются растворами органических и неорганических веществ. Другими словами, водные растворы — системы, наиболее распространенные в природе, и потому учение о растворах является важным разделом физической химии. [c.37]

    Обратимые химические реакции были изучены русским ученым Н, Н. Бекетовым (1865), который установил влияние концентрации реагирующих веществ на направление и скорость химического процесса. В частности, наблюдая действие газообразного водорода на соли и оксиды некоторых металлов, он пришел к выводу, что вытесняющее и восстанавливающее действие водорода зависит от давления, под которым находится газ, т. е. от массы водорода. Таким образом, Бекетов вплотную подошел к формулировке закона действующих масс. [c.181]

    Своим возникновением и развитием электрохимия обязана таким ученым, как Гальвани, Вольта, Петров, Дэви, Фарадей. Галь-вани и Вольта открыли и исследовали гальванические элементы. Петров проводил опыты по электролизу воды и растворов солей, используя вольтов столб из 4200 медных и цинковых пластинок. Дэви пропускал электрический ток через кусок едкой щелочи, смоченной водой, и у отрицательного электрода обнаружил шарик щелочного металла. Основные законы электролиза установил Фарадей. [c.360]

    Электрохимия зародилась на рубеже ХУП и XIX столетий. Рождение этой науки связано с именами итальянских ученых Луиджи Галь-вани и Алессандро Вольта. Занимаясь изучением физиологических функций лягушки, Л. Гальвани в 1791 г. впервые случайно реализовал электрохимическую цепь. В 1800 г. Вольта создал первый химический источник тока — вольтов столб , который представлял собой электрохимическую цепь, не содержащую живых тканей. Эта первая электрохимическая цепь была построена из кружочков серебра и олова (или меди и цинка) и пористых прокладок, смоченных раствором соли. [c.7]

    Возникновение электрохимии, изучающей свойства и закономерности электрохимических цепей, связано с построением первой такой цепи. В 1791 г. итальянский естествоиспытатель Л. Гальвани, изучая физиологические свойства препарированной лягушки, случайно реализовал своеобразную электрохимическую цепь, состоящую из мышцы лягушки и двух различных металлов. В 1800 г. другой итальянский ученый А. Вольта сконструировал первый химический источник тока — вольтов столб , который состоял из серебряных и оловянных электродов, разделенных пористыми прокладками, смоченными раствором соли. После этого события необычные свойства электрохимических цепей стали предметом изучения новой науки — электрохимии. [c.6]

    Чрезвычайное разнообразие комплексных соединений требует рационализации их номенклатуры. Многие из них до сих пор называются либо по имени открывпп их ученых (соль Чугаева), либо по их старьш методам получения (желтая и красная кровяные соли), либо известны под их торговыми названиями (берлинская лазурь, турнбуллиева синь), либо названы по их характерным свойствам (пурпу-рео-соль). [c.279]

    В 1824 г. Либих изучал фульминаты — соли гремучей кислоты а Вёлер (который со временем станет верным другом Либиха и вскоре синтезирует мочевину, см. разд. Крушение витализма ) изучал цианаты — соли циановой кислоты. Оба ученых послали сообщения о своих работах в журнал, издаваемый Гей-Люссаком. [c.75]

    Как и другие науки, физическая химия и отдельные ее разделы возникли или начинали развиваться особенно быстро и успешно в те периоды, когда та или иная практическая потребность вызывала необходимость быстрого развития какой-либо отрасли промышленности, а для этого развития требовалась прочная теоретическая основа. Так, например, развитие производства калийных удобрений для интенсификации сельского хозяйства привело к необходимости добывать калийные соли в давно известных Стасфуртских соляных месторождениях в Германии, пред-ставляюш,их собой залежи сложных смесей многих солей. Это в свою очередь вызвало многочисленные исследования растворимости в сложных водно-солевых системах и разработку учения о [ етерогенных равновесиях (Вант-Гофф). В России и Советском Союзе те же запросы практики вызвали большое развитие экспериментальных исследований, которые привели к созданию [c.16]


    Одно из первых конкретных представлений о природе химической связи возникло на основании экспериментального исследования электролиза английским ученым Майклом Фарадеем (1791-1867). (Электролиз означает разрыв на части при помощи электричества .) Если расплавить хлорид натрия, нагрев его выше 80ГС, и погрузить в расплав два электрода (катод и анод), как показано на рис. 1-8, а затем пропустить через расплавленную соль электрический ток, на электродах начнут протекать химические реакции ионы натрия будут мигрировать к катоду (где электроны поступают в расплав) и восстанавливаться там до металлического натрия [c.41]

    Первые сообщения об ионообменной адсорбции были сделаны в 1850 г. независимо друг от друга английскими учеными Томпсоном и Уэем. Изучая способность почв к поглощению удобрений и их вымывание дождем, они обнаружили явление обмена ионов между почвой и водными растворами солей. Несмотря на то что поглощение почвой солей (например, получение питьевой воды из морской) было известно уже в древности, серьезные исследования этого явления начались именно с указанных работ. Удовлетворительное объяснение обмена ионов (обратимость процесса, эквивалентность обмена) стало возможным только после открытия закона действия масс (1876 г.). Вещества, проявляющие способность к ионному обмену и используемые для адсорбции ионов, получили название ионообменников или ионитов. [c.164]

    Механизм действия раствора соли на бентонит, набухший в растворах полимеров, например КМЦ, гипана и других, может быть объяснен, исходя из учения П. А. Ребиндера [70]. Глинистая частица, набухгпая в растворе полимера, покрыта пленкой лиогеля, сильно соль-ватированной дисперсионной средой (водой) и диффузно переходящей в межмицелляриую жидкость. В первый пе])иод контакта происходит разру ]пение гидратных оболочек [c.240]

    И вот цель достигнута. 24 апреля 1953 г. в журнале Nature вышла статья Дж. Уотсона и Ф. Крика о структуре ДНК — натриевой соли дезоксирибонуклеиновой кислоты. Что дальше Первой реакцией Уотсона наряду с радостью был страх. А вдруг все это чепуха и модель двойной спирали окажется ошибочной Конечно, каждый ученый имеет право на ошибку. Но чем больше претензия, тем горше крах, особенно если под угрозой краха — единственная или, во всяком случае, главная цель жизни. [c.132]

    В 1948 г. французский ученый Луи Пастер обратил внимание, что винная кислота, точнее - ее аммониевые соли, образует кристаллы двух типов, которые являются как бы зеркальными отображениями друг друга. Пастер с помощью лупы и пинцета разделил их, и оказалось, что раствор одних кристаллов вращает плоскость поляризованного света вправо (d-винная кислота), а других - влево (1-винная кислота). Сам Пастер связьшал различия в свойствах с различным строением кристал- [c.230]

    Различные комплексные металлические соли ацетилацетона обладают характерными свойствами например, соединения меди окрашены в синий цвет и растворимы в хлороформе, соли железа имеют ярко-красную окраску, а ацетилацетонаты алюминия (т. кип. 314°) и бериллия (т. кип. 270°) представляют собой летучие, перегоняющиеся вещества. Строение этих солей, согласно К00рдинащ 0нн0му учению Вернера, мо Кно представить следующим образом  [c.321]

    В сотрудничестве с учеными из Института реактивов (ИРЕА) на заводе был разработан и внедрен бесспиртовый метод производства марганцевых солей. С помощью ученых из лаборатории перекисных соединений ИОНХ Академии наук на заводе были внедрены новые методы получения перекисных соединений. [c.147]

    Химический элемент — общее (широкое). Простое веще-сгво (уголь, графит, озон, металл и т. д.) частное. Таково соотношение объемов этих понятий. Следует также отличать понятия "простого вещества" и "простого тела". Под телом общепринято понимать твердые химические соединения. Тело может быть и простым веществом (медная болванка, например) и сложным (N33804 — соль). Простое вещество может существовать во всех трех агрегатных состояниях газообразном, жидком и твердом (тело). Простое тело — разновидность простого вещества. Второе понятие шире. Но чтобы понять это, науке потребовались столетия. Учение Ломоносова является концептуальным этапом в развитии атомистических представлений о строении материи. [c.25]

    Новиков Ю. H. Синтез и исследование слоистых соединений графита с переходными металлами и их солями. Автореф. дис. на соискание ученой степени канд. хим. наук. М., 1971, 19 с. В надз. Ин-т элементоорганических соединений РАН. [c.679]

    В пособии рассматриваются классы гомо- и гетеросоедипений (простые вещества, оксиды, хлориды, гидриды бинарные и сложные, типа кислородных кислот, солей и оснований), виды химических реакций (фазовые превращения, реакции обменного разложения, окислительно-восстановительные и комплексносоединительные), учения о тепловых эффектах и скоростях химических реакций, о химическом равновесии и электрохимии. Вводятся представления об энтропии веществ в различном агрегатном состоянии, о максимальной работе химических реакций, о порядке реакции дается количественная связь между этими характеристиками и тепловым эффектом реакции, константой химического равновесия и температурой. [c.240]

    Специальный термин химический анализ впервые применил в первой половине XVII в. английский ученый Р. Бойль для обозначения химических реакций, с помощью которых можно открыть одно вещество в присутствии других. Он же описал применение индикаторов — различных природных красителей (лакмус и др.) для распознавания кислот и оснований. Бойль описал также реакции открытия серной и соляной кислот посредством солей кальция и серебра, применил таннин для открытия железа и изучил ряд других реакций. [c.10]

    Механизм метанового брожения. Механизм образования метана давно интересовал исследователей. Впервые в XVIII в. ученые обратили виимапне, что из влажных почв, богатых органическими веществами, выделяется горючий газ — метан. В 1875 г. Л. Попов, исследуя брожение гуммиарабика, установил, что в результате этого процесса образуются двуокись углерода, водород и метан. Метановое брожение кальциевых солей уксусной и масляной кислот наблюдал Гоппе — Зейлер в 1887 г. Это брожение сопровождалось выделением метана и двуокиси углерода. Возбудители его были внесены в среду с коровьим навозом. [c.313]

    Качественные реакции иа пирофосфорную кислоту и ее соли. 1 . Добавляют к I—2 мл 0,1 Л1 раствора пирофосфорной кислоты 1—2 мл водного раствора белка. Наблюдают, происходит ли свертывание белка. Сравнивают по учениые результаты с )сзультатами теста 4. [c.176]

    Итальянский ученый Ф янчргкп Срлкми в сороковых годах XIX столетия обратил внимание на аномальные свойства некоторых растворов, являющихся, согласно современным представлениям, типичными коллоидными системами. Эти растворы сильно рассеивают свет растворенные в них вещества выпадают в осадок от прибавления к ним даже весьма небольших количеств солей, не взаимодействующих с растворенным веществом переход вещества в такой раствор и осаждение из него не сопровождаются изменением температуры и объема системы, что обычно наблюдается при растворении кристаллических веществ. Сельми назвал такие растворы, в отличие от обычных, псевдорастворами . Позднее они получили название золей. [c.9]

    Древнеримский ученый Плиний Старший (I в. н. э.) в Естественной истории в 37 книгах писал ...существует своеобразный факт, что, если ввести в 5 весовых частей воды больше одной весовой части соли (поваренной), растворяющее действие воды будет истрачено и больше соли уже не растворится . Рассчитайте коэффициент растворимости и процентную концентрацию соли по данным Плиния и сравните с значениями, найденными по рисунку 3. [c.22]

    ДИМЕТИЛГЛИОКСИМ (реактив Чугаева) НОК=С(СНа)-С(СНз)=ЫОН -бесцветные кристаллы, т. пл. 240° С малорастворим в воде, хорошо растворяется в спирте, эфире и растворах щелочей. Д. применяют в аналитической химии как селективный реагент на ион При действии Д. на соли никеля образуется нерастворимый кристаллический осадок красного цвета. Д. открывают также ионы Fe +, Pd +, Pt +, o + и др. Впервые описан как реактив на никель русским ученым Л. А. Чугасвым в 1905 г. [c.88]

    В 1841 г. Гр0м предположил, что присоединение молекул аммиака к металлу аналогично образаванию аммонийных солей. Вьюказанная в общей форме, эта мысль оказалась верной, но она получила ложное истолкование в работах некоторых ученых в силу отсутствия правильного представления о строении аммонийных солей. [c.17]

    Раннее изучение неорганических комплексов состояло, главным образом, из серии попыток объяснить существование и структур гидратов, двойных солей и аммиакатов солей металлов. Эти вещества были названы молекулярными или аддитивными соедине ниями, так как они образованы соединением устойчивых и кажу щихся насыщенными молекул. Ранние теории и объяснения, пред ложенные такими учеными, как Трем (1837 г.), Клаус (1854 г.), Бломстранд (1869 г.) и Йоргенсен (1878 г.), имеют в настоящее время несколько большее чем только историческое значение, по скольку координационная теория, предложенная Альфредом Вер нером в 1893 г., обобщила все, что в них было заключено. Эта тео рия, развитая и подкрепленная экспериментальными исследова ниями в течение последующих 25 лет, главным образом ответст венна за вызванный интерес к неорганической химии и быстрое е развитие на рубеже двух столетий. [c.232]

    Э. Митчерлих в 1819 г. впервые на солях КН2РО4 и КН2Аз04 доказал, что аналогичные по составу соединения элементов, сходные по химическим свойствам, имеют одинаковую или весьма близкую кристаллическую форму. В дальнейшем различными учеными такая зависимость между строением кристаллической решетки и химическим составом тела была установлена и на других веществах. Это явление Митчерлих назвал изоморфизмом. Дословно под изоморфизмом следует понимать такое явление, когда различные вещества кристаллизуются в одной сингонии, т. е. в одинаковых многогранниках. [c.54]


Библиография для Учение о солях: [c.363]   
Смотреть страницы где упоминается термин Учение о солях: [c.225]    [c.105]    [c.27]    [c.34]    [c.6]    [c.233]    [c.15]    [c.128]    [c.280]    [c.18]    [c.23]    [c.71]   
Смотреть главы в:

Теории кислот и оснований -> Учение о солях




ПОИСК







© 2025 chem21.info Реклама на сайте