Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние растворителя на реакции между дипольными молекулами

    Влияние растворителя на реакции между дипольными молекулами [c.67]

    Лейдлер и Эйринг применили теорию скоростей реакций между дипольными молекулами к кислотному и щелочному гидролизу сложных эфиров, аргументировав это тем, что с точки зрения влияния растворителя гидролиз эфира следует рассматривать как реакцию между дипольными молекулами эфира и воды. Они утверждают, что, если бы здесь имела место реакция между ионами и нейтральной молекулой, следовало бы ожидать, что скорость реакции будет уменьшаться в ионизирующих растворителях. Они приводят опубликованные данные [14, 15], показывающие, что как кислотный, так и щелочной гидролиз ускоряются такими растворителями. [c.70]


    Влияние растворителя на реакции между дипольными молекулами 71 а для щелочного гидролиза [c.71]

    Эффект растворителя часто осложняет физико-химическое исследование в растворах. При изучении молекулярных соединений наряду с необходимостью решить общую проблему влияния растворителя на физические параметры молекул растворенных веществ возникают дополнительные трудности, обусловленные возможностью сдвига равновесий между комплексом и свободными компонентами под влиянием растворителя. Вопросы учета изменений физических свойств молекул растворенных веществ (дипольные моменты, положение полос поглощения, параметры экранирования резонирующих магнитных ядер и т. п.) рассматриваются обычно в специальных монографиях, посвященных отдельным физическим методам. Поэтому мы рассмотрим только специфические особенности исследования молекулярных комплексов в растворах, связанные с необходимостью учета влияния растворителя на термодинамическое равновесие реакций комплексообразования. [c.48]

    Влияние растворителя на константу скорости реакции между ионом и дипольной молекулой выражается уравнением  [c.80]

    Зависимость т]1 от свойств среды имеет для хемилюминесценции свои особенности. При переходе от одного растворителя к другому в результате изменения сил и характера взаимодействия молекул реагентов с растворителем происходят большие или меньшие изменения конфигурации молекул реагентов и положения их энергетических уровней. Это обнаруживается, например, по изменению спектров поглош,ения молекул и проявляется в смещении полос поглощения и изменении соотношения между коэффициентами поглощения на разных длинах волн. Аналогичным изменениям подвергаются конфигурация и энергетические уровни активированного комплекса и продуктов реакции. В результате этих воздействий изменяется не только величина константы скорости элементарной реакции, что хорошо известно из кинетики, но может измениться и вероятность образования электронно-возбужденных частиц. По-видимому, наиболее сильного влияния растворителя на величину т), следует ожидать в реакциях с участием ионов или молекул, обладающих большими дипольными моментами. [c.14]

    Влияние растворителя на скорость реакций между ионами и дипольными молекулами [c.39]


    Между ионами и дипольными молекулами действуют электрические силы, которые изменяются при перенесении частиц в раствор. Характер и величина этого изменения зависят от полярных свойств растворителя и его диэлектрической проницаемости. Поэтому в выражении для скорости реакции между ионом и дипольной молекулой должен появиться зависящий от диэлектрической проницаемости электростатический член, подобный аналогичному члену в выражении для скорости реакции между ионами. Электростатические взаимодействия между попами и дипольными молекулами не столь значительны по сравнению с аналогичными взаимодействиями между ионами, поэтому они легче маскируются структурными или иными эффектами среды. Тем не менее это взаимодействие совершенно отчетливо и его следует оценить. Имеется несколько теоретических уравнений, описывающих влияние растворителя на электростатические взаимодействия и скорость реакций между ионами и дипольными молекулами. Ниже изложены некоторые из этих теорий. [c.39]

    Для реакции с участием двух заряженных частиц третий член правой части уравнений (5) и (6) становится незначительным по сравнению со вторым членом. Для реакций между двумя незаряженными дипольными молекулами в обоих уравнениях исчезает второй член, а влияние растворителя и ионной силы определяется лишь третьим членом. Для реакции между ионом и дипольной молекулой нужно учитывать как второй, так и третий член уравнения (5), однако в случае влияния ионной силы [уравнение (6)] существенным оказывается только третий член. [c.21]

    Несмотря на то что силы электростатического взаимодействия между дипольными молекулами меньше по величине, нежели между ионами или между ионами и дипольными молекулами, они тем не менее значительны и должны быть учтены при любом рассмотрении факторов, определяюших скорость реакций между электрически несимметричными молекулами. Поскольку диполь-дипольные взаимодействия существуют, растворитель будет оказывать влияние на силы, с которыми молекулы действуют друг на друга, а значит от этого будет зависеть возможность сближения молекул и химического взаимодействия между ними. Это влияние определяется диэлектрической проницаемостью растворителя. В данной главе рассмотрены различные способы теоретической трактовки подобного влияния растворителя на скорости реакции между дипольными молекулами. Вследствие относительно малой величины эффекта влияние диэлектрической проницаемости на электростатику реакций между дипольными молекулами легко маскируется специфическим влиянием растворителя или структурными эффектами. Сами же по себе структурные эффекты, по-видимому, трудно или даже невозможно обнаружить. [c.67]

    Еще более сложное, но не более строгое приближение было сделано Мельвин-Хьюзом [65], который при подсчете энергии ион-дипольйого взаимодействия учел эффект поляризации и силы отталкивания. Чтобы получить величину взаимодействия диполь — растворитель, была использ ована [66] модель Онзагера для диполя, окруженного оболочкой из молекул растворителя. Авторы воспользовались уравнением Пуассона для того, чтобы оценить влияние ионной оболочки на диполь. Полученные в этом случае ч )ормулы слишком сложны и вряд ли могут быть успешно применены для обработки экспериментальных результатов. Влияние ионной силы в реакциях между ионом и диполем может сказываться не только на специфических взаимодействиях. Для положительных ион-дипольных взаимодействий (0 > 90°) ориентация диполя приведет к тому, что поле иона будет уменьшать поля диполя. В результате следует ожидать, что ионная атмосфера оболочка), окружающая как свободный диполь, так и комплекс, образующийся при взаимодействии иона с диполем, будет гораздо сильнее стабилизировать свободный диполь. Это будет приводить к уменьшению скорости с увеличением ионной силы. В случае отрицательного взаимодействия увеличение ионной силы раствора вызывает увеличение скорости реакции. К сожалению, экспериментальных результатов, которые могли бы подтвердить эти выводы, до сих пор нет. Основная трудность здесь заключается в том, что до сих пор не было сделано ни одной попытки сравнить действие ионов и ионных пар в качестве реагентов [68]. Сложность модели сама по себе достаточно велика, и, по всей видимости, любое из соотношений, которое может быть выведено, сможет получить лишь качественное подтверждение. [c.459]

    В последнее время, однако, ситуация существенно изменилась. И это связано не только с исследованиями изменения скоростей ион-дипольиых и диполь-дипольных реакций под влиянием солевых добавок, приведшими к обнаружению как обычных, так и специальных солевых эффектов. Оказалось, что природа реагирующих соединений, их способность образовывать в растворе ионы и ионные пары различного типа, не только изменяет скорость реакции, но и оказывает влияние на сте-реохимический результат процесса и вообще на механизм процесса в целом. Более того, оказалось, что многие реакции, формально происходящие между нейтральными молекулами, на самом деле осуществляются с участием ионных пар или ионных ассоцяатов, что объясняется влиянием растворителя. [c.5]


    Полярная частица (молекула, радикал) в полярном растворителе сольватирована, т. е. окружена рубашяой из молекул растворителя. Неспецифическая сольватация обусловлена электростатическим взаимодействием между молекулами. Константа скорости реак- ПИИ зависит от сольватации исходных частик и актгаированного комплекса, а степень сольватации частицы обусловлена, в частности, ориентационным взаимодействием и зависит от дипольного момента частицы и полярности растворителя. Если активированный комплекс более полярен, чем исходные частицы, то в полярном растворителе реакция протекает быстрее. Количественный учет влияния полярности среды на константу скорости реакции А + [c.406]

    Облучение эфиров коричной кислоты индуцирует транс-цис-изомеризацию, димеризацию и расщепление сложноэфирной связи. В данном случае последнему превращению подвергается менее 5% исходного циннамата. Как и можно было предполагать, повышение начальной концентрации циннамата способствует димеризации и не благоприятствует изомеризации. При транс— г ыс-изомеризации окружающие молекулы растворителя претерпевают лишь небольшие возмущения, поэтому изомеризация протекает практически с одной и той же скоростью в изотропной, смектической и твердой фазах -бутилстеарата. Напротив, региоселективность фотохимической реакции [2-[-2]циклоприсо-единения в очень большой степени зависит от природы фазы. В продуктах обсуждаемой реакции из многих возможных димеров обнаружены только два стереоизомера, изображенные на схеме (5.165). Как оказалось, в смектической и твердой фазах доминирует димеризация по типу голова к хвосту. Этот эффект можно объяснить, допустив, что в мезофазе молекулы циннамата реагируют друг с другом не только за счет эффектов растворителя, но и за счет диполь-дипольных взаимодействий. Последние приводят к парным антипараллельным ассоциатам молекул циннамата, которые располагаются между окружающими их молекулами растворителя. Облучение таких антипараллельных ассоциатов преимущественно приводит к димерам типа голова к хвосту. Резюмируя, можно сказать, что региоселективность фотодимеризации -октадецил-тра с-циннамата контролируется двумя факторами — ориентацией молекул циннамата под влиянием упорядоченной структуры растворителя и диполь-дишль-ными взаимодействиями между молекулами циннамата [731]. [c.381]

    Рассмотрим на модельном примере влияние полярного растворителя на реакционную способность. Обычно полагают [179, 209], что оно связано с изменением дипольного момента переходного состояния (м-х) по сравнению с дипольными моментами реагентов (2р,а). Действительно, в полярном растворителе, например, увеличение Их по сравнению с должно приводить к дополнительной стабилизации переходного состояния за счет электростатического дипольного взаимодействия с молекулами растворителя и, как следствие, к понижению энергии активации и увеличению скорости реакции. В работе [206] ва примере модельной системы ЫНзЧ-НР была исследована зависимость энергии активации и дипольного момента активированного комплекса от полярности растворителя, который моделировался двумя диполями, составленными из двух пар точечных зарядов, расположенных по оси переноса протона. Расстояние между точечными зарядами составляло 0,15 нм, минимальные расстояния по оси между зарядами и атомами системы — 0,2 нм, величина заряда варьировалась по модулю от 0,1 до 1,0 е. На рис. 2.2 приведены зависимости полной энергии рассмотренной системы от положения атома Н между атомами Мир для разных величин а на рис. 2.3 — зависимость АЕ , которую [c.87]

    Другие реакции. Скорость отщепления бромистого водорода от а -дифеНил- аар-трибромэтана метилатом натрия в бензольном растворе с прибавкой различных количеств других растворителей была изучена Лютгертом (1934 г.). Полярные вещества хлороформ, хлорбензол и бромбензол уменьшают скорость реакции, тогда как другие полярные молекулы, как, например, нитробензол, эфир и ацетон, увеличивают скорость. В этом случае, повидимому, нет никакой явной связи между свойствами растворителя и его влиянием. Однако есть основание полагать, что смешанные растворители представляют совершенно особенный случай. Циглер и его сотрудники (1933 г.) исследовали разложение гексафенилэтана в целом ряде растворителей и нашли, что скорость почти не зависит от характера растворителя. Во всяком случае, между константой скорости и дипольным моментом растворителя нельзя было открыть никакой связи. Можно упомянуть также о моно-молекулярном разложении азотного ангидрида (стр. 191) и об изомеризации пинена в растворе (стр. 192), скорости которых большей частью не зависят от природы растворителя. [c.230]


Смотреть страницы где упоминается термин Влияние растворителя на реакции между дипольными молекулами: [c.216]    [c.211]    [c.211]   
Смотреть главы в:

Влияние растворителя на скорость и механизм химических реакций -> Влияние растворителя на реакции между дипольными молекулами




ПОИСК





Смотрите так же термины и статьи:

Влияние растворителя на скорость реакций между ионами и дипольными молекулами

Дипольные молекулы

Растворители молекулами

Реакция между СО



© 2024 chem21.info Реклама на сайте