Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пассивность коррозионностойких сталей

    Пассивность коррозионностойких сталей [c.146]

    Появление пассивируемых коррозионностойких сталей послужило также поводом для разработки анодной защиты. В сильно кислых средах высоколегированные стали, как и углеродистые, практически не поддаются катодной защите, потому что выделение водорода затрудняет необходимое снижение потенциала. Между тем с применением анодной защиты можно пассивировать и удерживать в пассивном состоянии также и высоколегированные стали. Ц. Эделеану на примере насосной системы из хромоникелевой стали в 1950 г. первый показал, что анодная поляризация корпуса насоса и подсоединенных к нему трубопроводов защищает от разъедания концентрированной серной кислотой [33], Неожиданно большая протяженность зоны анодной защиты может быть объяснена высоким сопротивлением поляризации пассивированной стали. Локк и Садбери [34] исследовали различные системы металл — среда, которые могут быть применены для анодной защиты. В 1960 г. в США уже эксплуатировалось несколько установок анодной защиты, например для складских резервуаров-хранилищ, для сосудов-реакторов в установках сульфонирования и нейтрализации. При этом достигалось не только увеличение срока службы аппаратов, но и повышение степени чистоты продукта, В 1961 г. впервые была применена в крупнопромышлен-ных масштабах анодная защита для предотвращения межкристаллитного [c.35]


    В США такие поляризационные элементы применяют довольно часто [9]. Они состоят из пластинчатых электродов из коррозионностойкой стали и раствора электролита — едкого кали с концентрацией 250— 300 г/л. В такой среде коррозионностойкая сталь бесспорно является пассивной, так что при пропускании тока могут проходить только реакции по уравнениям (2.17) и (2.19). [c.311]

    При затруднениях в определении скорости коррозии рекомендуется пользоваться распределением металлов по группам, в пределах которых контакт может считаться допустимым. Для атмосферных условий эксплуатации можно выделить пять таких групп I — магний П — алюминий, цинк, кадмий П1 — железо, углеродистые стали, свинец, олово IV — никель, хром, коррозионностойкие стали (в пассивном состоянии) типа Х17 и 18—8 V — медно-никелевые и медноцинковые сплавы, медь, серебро, золото. [c.74]

    Однако в морской воде невозможно сохранить в пассивном состоянии углеродистые, легированные конструкционные стали, а также некоторые коррозионностойкие стали из-за присутствия в морской воде значительного количества хлорид- и сульфат-ионов, которые разрушают защитные оксидные пленки и образуют комплексы с ионами железа, активизируя анодный процесс электрохимической коррозии. [c.37]

    Способность аустенитных хромоникелевых коррозионностойких сталей в окислительных и нейтральных средах переходить при анодной поляризации в пассивное состояние делает возможным применение при необходимости их анодной защиты. [c.18]

    Наиболее полно изучен процесс питтингообразования в коррозионностойких сталях. При наличии в среде хлорид-ионов возникает процесс активирования поверхности металла в некоторых участках, пассивное состояние которых по каким-либо причинам менее устойчиво, чем на остальной поверхности. Такими уча- [c.115]

    К коррозионностойким относятся стали с содержанием хрома не менее 12 %. В окислительных средах они переходят в пассивное состояние, сопровождающееся повышением электродного потенциала (рис. 1.1) и уменьшением скорости коррозии [1.1, 1.2]. В зависимости от легирования коррозионностойкие стали подразделяются на хромистые и хромоникелевые. Хромоникелевые [c.10]

    В кислых растворах тит ан может становиться анодом по отношению к коррозионностойким сталям и даже алюминию [4.31. При этом скорость коррозии титана зависит от соотношения площадей контакти-руемых металлов, а также величины перенапряжения выделения водорода на сопряженном металле. Такие металлы, как А1, Сё, 2г, 8п, В1, Hg, увеличивающие скорость коррозии титана, имеют высокое перенапряжение выделения водорода. Элементы с низким перенапряжением выделения водорода Р1, Аи, N1, Рс1 переводят титан в пассивное состояние и резко снижают скорость его коррозии (рис. 4.11). [c.193]


    Метод измерения электродных потенциалов очень полезен при быстрой оценке способности сплавов восстанавливать пассивное состояние, например- при зачистке поверхности. Этим методом пользуются также прр определении склонности коррозионностойких сталей к межкристаллитной коррозии, при определении эффективности действия ингибиторов. [c.49]

    Наиболее полно изучены процессы питтингообразования на коррозионностойких сталях. При наличии в коррозионной среде хлор-ионов становится возможным активирование поверхности в отдельных ее точках, где пассивное состояние по каким-либо причинам менее устойчиво, чем на остальной поверхности. Такими участками могут быть неметаллические включения, структурные дефекты или участки с менее совершенной фазовой или [c.72]

    Коррозионностойкие стали, с давних пор называемые нержавеющими или кислотостойкими, — это высоколегированные стали, главным легирующим компонентом которых является хром (>12%). Другими легирующими добавками служат никель, марганец, молибден, титан. Коррозионная стойкость этих сталей определяется образованием тонкого защитного окисного слоя на их поверхности (пассивное состояние). [c.98]

    При увеличении длительности работы питтинга возможно появление предельного тока (например, при потенциале д) вследствие диффузионного ограничения доставки в глубокий питтинг компонентов раствора и отвода продуктов реакции, и тогда анодная кривая вырождается в кривую °д д 4 — что отмечалось при исследовании модельного питтинга [41, с. 77 71]. При потенциале коррозии к, задаваемом окислительными свойствами среды (в условиях питтингообразования ц более положительный, чем пт) происходит возникновение питтинга в результате взаимодействия адсорбированных активирующих анионов, например, хлор-ионов с пассивной пленкой в отдельных точках. Локальность процесса обусловлена негомогенностью поверхности металла и оксидной пленки и связанной с этим неравномерностью адсорбции анионов на пассивной пленке. Начальной стадии возникновения питтинга соответствует растворение структурных элементов поверхности, имеющих менее совершенную пассивацию. Несовершенство пассивной пленки может быть связано с каким-либо искажением структуры металла наличием границ зерен, различного рода включениями (металлическими и неметаллическими), выходом на поверхность кристаллов с менее благоприятной для пассивации ориентацией или же более тонкой неоднородностью, как, например, наличием дислокаций и включением в решетку инородных атомов. Местные изменения стойкости пассивной пленки могут быть вызваны также понижением концентрации основного пассивирующего компонента (например, хрома в коррозионностойких сталях), или дополнительных легирующих компонентов (51, Мо и т. п.). На этой стадии отсутствуют заметные концентрационные изменения электролита и омические падения потенциала. Питтинг еще не имеет характерной полусферической формы, определяемой этими параметрами. [c.91]

    Коррозионная стойкость титана и его сплавов в большей степени, чем каких-либо других определяется легкостью установления и поддержания пассивного состояния. Поэтому новый метод повышения пассивности и коррозионной стойкости катодным легированием (модифицированием), впервые открытый в СССР на коррозионностойких сталях [20, 208], получил практическое использование в первую очередь применительно к титану [2]. [c.247]

    Так как коррозионностойкая сталь покрывается пассивной пленкой, делающей невозможным нанесение прочно сцепленных гальванических покрытий, то необходима обработка поверхности, состоящая в нанесении никелевого слоя, предупреждающего пассивацию. [c.37]

    Изменение этих величин возможно за счет изменения состава сплава (очистка от примесей, вызывающих по каким-то причинам усиление коррозии, легирование). Уменьшение содержания углерода в коррозионностойких сталях приводит к уменьшению возможности выпадения карбидов хрома по границам зерен при отжиге, что позволяет избежать межкристаллитной коррозии коррозионностойких сталей [31 ]. Уменьшение концентрации примесей фосфора также приводит к снижению межкристаллитной коррозии коррозионностойких сталей [37]. Наличие примесей в техническом магнии и алюминии, повышающих скорость катодного процесса, приводит к тому, что указанные металлы в морской воде находятся в состоянии пробоя. Очистка металлов от примесей вызывает снижение скорости катодного процесса — магний и алюминий переходят в пассивное состояние [17]. [c.46]

    Неоднородность защитных пленок на поверхности металла Макро-несплошность пленки. Участки, не покрытые окисной пленкой, — аноды Неравномерность распределения рыхлых продуктов коррозии. Участки под ржавчиной, как правило, более анодны Микропоры в защитной пленке. Металл в порах —аноды Ускорение коррозии железа при несплошной окалине Ускорение при появлении ржавчины коррозии железа Растворение металлов в момент активирования пассивного состояния (например Ре, А1, коррозионностойкие стали —в азотной кислоте) [c.9]


    При испытаниях на склонность коррозионностойких сталей к межкристаллитной коррозии чаще всего применяют раствор серной кислоты и медного купороса, в котором кипятят образцы. Отличительной чертой этого раствора является то, что в нем растворяются преимущественно границы между зернами, в то время как тело зерен сохраняет относительную пассивность. [c.42]

    Аналогично высоколегированным сталям, алюминий и его сплавы в нейтральных водах тоже подвергаются язвенной коррозии [8, 26, 27, 40—42], Потенциалы язвенной коррозии у алюминия и его сплавов гораздо более отрицательны, чем у сталей, тогда как электропроводность пассивного слоя чрезвычайно мала. Вследствие этого катодная промежуточная реакция сильно затормаживается, так что несмотря на неблагоприятные значения потенциала язвенной коррозии алюминиевые сплавы оказываются сравнительно коррозионностойкими. Потенциалы язвенной коррозии имеют практическое значение для оценки коррозионной опасности при образовании коррозионного элемента с посторонними металлами или для катодной защиты. Для водопроводной воды (4 ммоль-л С ) при 25 °С они составляют примерно /н —В, а [c.70]

    Введение в твердый раствор никеля придает хромистым сталям более высокую химическую стойкость как за счет образования пассивной пленки оксида никеля, так и за счет перевода стали в более гомогенную (и, следовательно, в более коррозионностойкую) аустенитную структуру. [c.82]

    В некоторых условиях для металлов и сплавов, склонных к перепассивации (как, например, для коррозионно-стойких сталей), при дальнейшей анодной поляризации при еще более положительных потенциалах за областью перепассивации наблюдается вновь торможение процесса анодного растворения. Это явление получило название вторичной пассивности. В настоящее время, несмотря на ряд работ, посвященных исследованию вторичной пассивности, главным образом, нержавеющих сталей и никеля [20, с. 5] остается еще не вполне ясным механизм этого явления. Согласно представлениям Т. Хоймана и сотрудников вторичная пассивность коррозионностойких сталей обусловлена пассивацией железа, содержание которого на поверхности возрастает вследствие избирательного растворения хрома. М. Пражак и В. Чигал считают, что явление вторичной пассивации связано с образованием на поверхности сложного оксида (содержащего хром и железо) типа шпинели. [c.59]

    Факторы, влияющие на точечную коррозию. Природа металла. Отдельные металлы и сплавы в разной степени проявляют склонность к точечной коррозии. Более других подвержены точечной коррозии пассивные металлы и сплавы. В растворах хлоридов наибольшую стойкость обнаруживают тантал, титан, хром, цирконий и их сплавы весьма склонны к питтингообра--зованпю в этой среде высоколегированные хромистые и хромоникелевые сплавы. Склонность к точечной коррозии ие всегда одинакова, она зависит от химического состава стали. Чем выше в стали содержание хрома, никеля и молибдена и чем меньше углерода, тем больше ее сопротивляемость точечной коррозии. Коррозионностойкие стали тем меньше подвержены пит-тингу, чем однороднее их структура, в которой должны отсутствовать включения карбидов и других вторичных фаз, а также неметаллические фракции, в частности окислы и сульфиды, уменьшающие стабильность пассивного состояния и облегчающие разрушение пассивирующей пленки ионами хлора. Некоторые виды термообработки, приводящие к улучшению однородности стали, благоприятно сказываются на ее сопротивляемости точечной коррозии. [c.443]

    Коррозионностойкие стали и другие пассивные сплавы (например, медноникелевые) можно защитить от точечной коррозии катодной поляризацией их от внешнего источника постоянного тока или с помощью цинковых, алюминиевых или железных протекторов. Катодная поляризация должна обеспечить такой потенциал поверхности защищаемого металла или сплава, величина которого будет ниже потенциала питтингообразо-вания. [c.444]

    Сплавы на основе железа. Само железо стойко к коррозии лишь в р-рах щелочей. Повышения стойкости добиваются с помощью легирования разл. элементами (см. Же.1еза сп.ювы). К коррозионностойким сталям относят хромистые, хромоникелевые, хромомарганцевоникелевые и хромомарганцевые. Их стойкость в разл. средах определяется структурой, а также св-вами образующихся пассивирующих поверхностных слоев (см. Пассивность металлов). При Hap>TiieHHH пассивирующей пленки в нейтральных н кислых р-рах хлоридов возникает питтинговая, щелевая и язвенная коррозия, а при т-рах больше 80 °С - коррозионное растрескивание. Для предупреждения структурно-избира-тельных видов коррозии (межкристаллитная, ножевая) стали дополнительно легируют Ti или Nb, а также снижают содержание в них С до 0.02%. [c.478]

    Наиб, склонность к М. к. наблюдается в тех случаях, когда избыточные фазы на границах зерен соприкасаются, образуя непрерывные цепочки. Напр., для коррозионностойких сталей основной причиной М. к. является выделение вдоль границ зерен фаз, обогащенных Сг, гл. обр. карбидов на основе Сг. Соседние зоны, обедненные Сг, переходят в пассивное состояние при более положит, значениях потенциала, чем фазы с избытком Сг (см. Пассивность металлов). В результате в слабоокислит. средах (т. е. при потенциалах, соответствующих переходу сталей из активного состояния в пассивное) обедненные Сг зоны остаются электрохимически активными и раств. с более высокими скоростями, чем фазы, обогащенные Сг. В сильноокислит. средах (т. е. при потенциалах, соответствующих области перепассивации) развитие М. к. обусловлено избират. растворением самих избыточных фаз. Оно ускоряется, если в этих фазах имеются легирующие элементы, легко подвергающиеся перепассивации (Мо, W, V), или элементы с низкой коррозионной стойкостью (Мп, Си). Одной из причин М. к. пром. материалов м. б. сегрегация по границам зерен технол. примесей этим объясняется, напр., М. к. закаленных аустенитных коррозионностойких сталей, содержащих примеси Р, Si и др., в сильноокислит. средах. [c.12]

    В коррозионностойкие стали вводят титан в количестве Г > 5С, как правило, не выше 1,0... 1,5%, который является сильным карбидообразующим элементом. Титан образует с углеродом карбиды П2С и ГгС, уменьшает возможность образования карбидов хрома СгузС ., Сг-Сз, СГ3С2 (что происходит при выплавке и термообработке стали), тем самым повышая возможность образования пассивной пленки оксида хрома. На таком принципе основано создание ряда коррозионностойких сталей, например, аустенитных. ромоникелевых коррозионностойких сталей типа [c.83]

    Инконель (N1, 11 — 15 Сг, 1 Мп, 1 Ре) Коррозионностойкая сталь 12X17 (пассивное состояние) [c.78]

    Наиболее сильно МКК проявляется в таких условиях, когда границы зерна корродируют в активном состоянии (с большой скоростью) а зерно находится в пассивном состоянии и почти не разрушается. По этому принципу подбирают и коррозионные растворы для выявления склонности к МКК. Область действия различных растворов для коррозионных испытаний на межкристаллит-иую коррозию удобно определить, если сопоставить стационарные потенциалы стали в этих растворах с поляризационной кривой для коррозионностойкой стали, как показано на рис. 31 [107J. [c.107]

    Для легко пассивирующихся сплавов можно применять и анодную защиту, обеспечивающую поддержание пассивного состояния. Этот метод может быть успешно использован для углеродистых п, особенно, коррозионностойких сталей в окислительных средах [51, с. 295]. [c.118]

    Х17Н13МЗТ, 06ХН28МДТ в сернокислых пульпах определяется устойчивостью пассивного состояния и коррозионной стойкостью. Введение окислителей (азотной кислоты, сернокислого оксидного железа, пенто-ксида ванадия) в этих условиях поддерживает устойчивость пассивного состояния коррозионностойких сталей и обеспечивает их высокую эро-зионно-коррозионную стойкость. [c.121]

    Основой коррозионностойких сталей являются сплавы железо—хром, содержащие 12—30 % Сг. Хром принадлежит к легкопассивирующимся металлам и является легирующим элементом эффективно повышающим коррозионную стойкость железа вследствие перевода сплава в пассивное состояние. Из рис. 48, на котором представлены анодные [c.146]

    Ускоренный приближенный электрохимический метод испытания на точечную коррозию состоит в том, что образец стали поляризуют анодно от внешнего источника постоянного тока и одновременно измеряют его электродный потенциал. При достижении некоторого значения потенциала защитная пленка на образце подвергается точечному разрушению, вследствие чего значение электродного потенциала образца практически не меняется с увеличением поляризующего тока. Достигнутое при анодной поляризации постоянное значение по-тенциала называется потенциалом пробивания. Потенциал пробивания может быть использован в качестве количественной характеристики устойчивости пассивного состояния коррозионностойких сталей. [c.161]

    Неметаллические неорганические покрытия, наносимые на детали нз коррэзионностойких сталей. Химические пассивные покрытия. Коррозионная стойкость деталей из коррозионностойких сталей определяется качеством пассивных покрытий. Качество пассивного покрытия определяется полнотой удаления окалины, содержанием хрома в поверхностном слое и технологие пассивирования. [c.705]

    Электрохимические методы исследования локальной коррозии наиболее полно разработаны применительно к нержавеющим, коррозионностойким сталям, где локальная (питтинговая, язвенная) коррозия встречается часто. Это связано с возникновением на нержавеющих сталях пассивного состояния металла, при нарушении которого возникают питтинги, обьединяющиеся затем в язвы. [c.13]

    Введение в твердый раствор никеля придает хромистым сталям более высокую химическую стойкость как за счет образования пассивной пленки оксида никеля, так и за счет перевода стали в более гомогенную (и, следовательно, в более коррозионностойкую) аустенитную структуру. Наряду с повышением коррозионвой стойкости никель способствует повышению пластичности, ударной вязкости, жаростойкости, а при использовании его в качестве основы вместо железа - и жаропрочности сплавов. В качестве аустенитообразующих элементов используют также азот, марганец, медь и кобальт. [c.14]

    Вообще говоря, в морской воде в качестве окислителя могут выступать ионы НзО или молекулы воды и растворенный кислород. Исследованию катодных процессов в хлоридсодержащих средах были посвящены работы Г. В. Акимова, Н. Д. Томашева, Г. Б. Кларк, И. Л. Розенфельда. Как показали исследования, коррозия магния и его сплавов протекает в основном за счет водородной деполяризации алюминий и его сплавы, коррозионностойкие и конструкционные стали, никель и никелевые сплавы, медь, медные сплавы подвергаются коррозии с кислородной деполяризацией. Растворимость кислорода в морской воде ограничена. При протекании коррозии с кислородной деполяризацией очень часто скорость катодного процесса определяется диффузией кислорода и поверхноети металла. В таких условиях перемешивание среды или перемещение поверхности металла относительно среды является важным фактором, который может оказать существенное влияние на характер коррозии. При перемешивании скорость катодного процесса будет уве-личиваться и металл из пассивного состояния может переходить в пробойное состояние (см. рис. 18). [c.43]


Смотреть страницы где упоминается термин Пассивность коррозионностойких сталей: [c.14]    [c.584]    [c.78]    [c.78]    [c.78]    [c.12]    [c.92]    [c.153]    [c.175]   
Смотреть главы в:

Теория коррозии и коррозионно-стойкие конструкционные сплавы -> Пассивность коррозионностойких сталей




ПОИСК





Смотрите так же термины и статьи:

Пассивность



© 2024 chem21.info Реклама на сайте