Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дегидрогенизация углеводородов различных рядов

    ДЕГИДРОГЕНИЗАЦИЯ УГЛЕВОДОРОДОВ РАЗЛИЧНЫХ РЯДОВ [c.550]

    Центральным местом в представлениях, развиваемых Фростом, явч ляется опыт разъяснения процесса нефтеобразования без участия водорода, который образуется где-то извне, независимо от материнского вещества нефти и к тому же практически не обнаруживается в газах,, сопровождающих нефтяные залежи. Процессы гидрогенизации проис- ходят по этой схеме за счет перераспределения (диспропорционирования) водорода многообразных органических соединений протонефти , каковое происходит под влиянием длительного воздействия на эти соединения алюмосиликатов (глин). В результате такого перераспределения, как было указано выше, образуются, с одной стороны, продукты гидро-и дегидрогенизации, т. е. углеводороды различных рядов (парафины,. нафтены и ароматика), с другой стороны, продукты глубокой дегидрогенизации и полимеризации (дегидрополимеризации), в итоге, вещества битуминозного характера. Ближайшая сравнительная характеристика и тех, и других продуктов, образующихся в естественных условиях и получаемых в лабораторной практике, является одной из ближайших задач в дальнейшем развитии этой работы, которая должна, наконец,, вскрыть сущность процесса нефтеобразования, протекающего в таинственной лаборатории природы. [c.309]


    Так же как при крекинге и гидрогенизации, характер и направление реакций при дегидрогенизации углеводородов существенно зависит от их химической природы. Примеры этого рода неоднократно приводились выше. Здесь эти вопросы должны быть рассмотрены кратко, но систематически в применении к углеводородам различных рядов. [c.550]

    Теория и практика каталитической дегидрогенизации углеводородов гексаметиленового ряда базируются на исследованиях акад. Н. Д. Зелинского и его школы. Основой этих исследований является установленный Н. Д. Зелинским факт избирательного отношения углеводородов различных классов и различного строения к дегидрогенизационному катализу в присутствии мелкодисперсных палладия и платины [4]. Было найдено, что циклогексан п [c.165]

    Нафтены. Нафтены различных рядов, с боковыми группами и без них, при каталитическом крекинге подвергаются расщеплению как по месту боковых групп, так и в цикле с образованием газообразных продуктов. Наряду с этим для циклогексана и его гомологов протекает дегидрогенизация с образованием ароматических углеводородов. Одновременно интенсивно протекают реакции диспропорционирования водорода, в результате чего содержание ненасыщенных углеводородов в катализате здесь значительно меньше, чем в катализате от крекинга парафинов и олефинов. [c.497]

    Было выполнено также сопоставление скоростей дегидрогенизации циклогексана, его гомологов и циклогексена на окисных катализаторах по кажущейся константе скорости данной реакции а, вычисленной по уравнению Фроста. Используя результаты опытов, проведенных при различных температурах и постоянной скорости подачи (2 час- ), были вычислены средние скорости образования аренов по их выходу, отнесенному к 1 см катализатора, Ша - Путем сравнения величин ша в ряду циклогексан, циклогексен, декалин и тетралин выяснено влияние структуры и ненасыщен ности молекул циклических углеводородов на скорость их дегидрогенизации. В табл. 5 скорость конверсии всех углеводородов сопоставлена со скоростью дегидрогенизации циклогексана, принятой за единицу. [c.141]

    Например, отмечалось увеличение скорости реакции дегидрогенизации циклогексана, этилциклогексана, а также дегидрогенизации и дегидратации спиртов в первые часы работы катализаторов с активным металлическим компонентом [65, 101—104], Временное увеличение активности катализатора отмечалось в процессе ароматизации парафиновых углеводородов (14, 24, 105]. При крекинге углеводородов на алюмосиликатных катализаторах отмечалось сохранение каталитической активности вплоть до 5—10% увеличения веса катализатора [106, 107]. Отсутствие отравляющего действия углистых отложений на катализаторе в начальных стадиях угле-накопления отмечалось и другими авторами [108]. Сохранение специфики природы различных катализаторов (медь, силикагель, кварц, а также медь, серебро, золото, железо, кобальт, никель, окись ванадия на силикагеле) после сильного обугливания было отмечено в случае пиролиза бензола (50, 56, 59]. В ряде случаев отмечено изменение специфичности катализатора по мере обугливания. Например, изменяется соотношение между выходами олефинов и арп-матики по мере обугливания катализатора [24, 105]. Двуокись титана, проявляющая в свежеприготовленном состоянии дегидрирующие свойства в реакции с изо-пропиловым спиртом, становится типично дегидратирующим катализатором после обугливания в ходе дегидрогенизации [109]. То же наблюдается с окисью иттрия [ПО, 111] и с некоторыми другими катализаторами. [c.286]


    Это —немногие примеры, которые позволяют использовать сведения, представленные в таблицах различных каталитических реакций органических и неорганических соединений для анализов и сравнений. Катализаторы можно классифицировать также по присущим им функциям, т. е. как вещества, способствующие ослаблению связей, и как вещества, образующие промежуточные продукты присоединения. Первоначальные изменения, вызываемые хлористым алюминием, например в углеводородах, могут сводиться к активации водородных атомов, ведущей в некоторых случаях к ослаблению связей. Активация водородных связей проявляется при гидрогенизации и дегидрогенизации, а также конденсации в ароматическом ряду и в реакциях крекинга и обмена. Миграция галоидных атомов в углеродных цепях и циклах под влиянием хлористого алюминия наблюдается при реакциях изомеризации. Окись магния и титана, глины и некоторые природные земли способствуют разрыву углерод—углеродной связи. Наиболее типичные катализаторы для реакций галоидирования — это вещества, обычно применяемые в качестве носителей при реакциях в паровой фазе. Некоторые катализаторы способны к образованию двойных солей с реагирующими веществами в этом случае стабильность промежуточных продуктов определяет их каталитическое действие. [c.4]

    Аналогичным путем можно определить и адсорбционные потенциалы других связей. Если брать различные радикалы-заместители, то можно так же измерить влияние заместителей. Необходимо только, чтобы механизм реакции был атомный, а пе ионный. Атомный механизм реакций дегидрогенизации спиртов и углеводородов и дегидратации спиртов над определенными окислами был установлен непосредственно — методом меченых атомов. Было установлено так же, что заместители предельного ряда, входящие в молекулы, оказывают слабое влияние на энергии связи с катализатором. Заместители, обусловливающие появление энергии стабилизации (карбоксильная, фенильная группы и т. п.), сильно влияют на Одк- [c.214]

    Кроме того, при превращениях ароматических углеводородов существенную роль играют реакции конденсации. К этим реакциям наиболее склонны полициклические ароматические углеводороды, в результате чего повышается количество кокса, отлагающегося на катализаторе. Каталитический крекинг смеси углеводородов идет последовательно. При одинаковом примерно числе углеродных атомов в молекуле углеводороды различных рядов по последовательности их превращений на алюмосиликатных катализаторах располагаются в следующем порядке 1) конденсированные ароматические углеводороды, 2) нафтено-ароматические углеводороды и полициклические нафтены, 3) алкилирован-ные бензолы и нафталины, 4) парафины. Влияние ароматических углеводородов с конденсированными циклами на каталитический крекинг парафинов, нафтенов и олефинов изучали Д. И. Сос-кинд и С. И. Обрядчиков [88]. Ими установлено, что конденсированные ароматические углеводороды больше всего тормозят крекинг парафинов меньше —нафтенов и еще меньше олефинов. Так как в дистиллятных фракциях масел преобладают нафтено-ароматические углеводороды, то при низкотемпературном крекинге этих фракций мы вправе ожидать преимущественный крекинг этих углеводородов, сопровождающийся расщеплением нафтеновых колец, частичной их дегидрогенизацией с образованием малокольчатых ароматических углеводородов, имеющих достаточно длинные алкильные цепи. [c.250]

    Неоценимый вклад в химию углеводородов внес своими блестящими исследованиями Н. Д. Зелинский с сотрудниками. Результаты исследований в области каталитической дегидрогенизации нафтеновых углеводородов легли в основу одного из промышленных методов получения толуола из нефтяного сырья. Не меньшее значение имеет открытая сотрудниками Зелинского реакция циклизации парафиновых углеводородов, которая может быть использована в качестве нового метода получения ароматических углеводородов из нефтяного сырья. В результате работ Н. Д. Зелинского, Б. А. Казанского и их многочисленных сотрудников была доказана взаимо-превращаемость углеводородов различных рядов при каталитических реакциях, Особо следует отметить исследования Н. Д. Зелинского по разработке синтеза углеводородов на базе окиси углерода и водорода хотя реакция между окисью углерода и водородом была осуществлена в промышленном масштабе впервые в Германии Фишером и Тропшем, следует отметить, что она была открыта русским химиком Е. И. Орловым в 1908 г. Таким образом, в области создания новых процессов получения углеводородов—основного сырья для промышленности органического синтеза—работы отечественных исследователей занимают одно из первых мест. [c.4]

    Мультиплетная теория позволяет приближенно рассчитать и предвидеть последовательность относительной скорости однотипных реакций некоторых классов на данном катализаторе или скорость данной реакции на разных однотипных катализаторах. Оправдалось предсказание теории о каталитической активности кадмия для дегидрогенизации углеводородов и пипиридина и ряд других примеров, Мультиплетная теория позволяет предсказать и объяснить ряд опытных фактов гетерогенного катализа, главным образом, для различных гетеролитических реакций гидрирования, гидратации, дегидрирования, дегидратации и др. [c.445]


    Изучая явления гидрогенизации и дегидрогенизации в различных направлениях, Н. Д. Зелинский показал [И], что углеводороды рядов ци-клонентана и циклогептана, а также парафины (гексан) не подвергаются дегидрогенизации и остаются без изменения в тех условиях, при которых циклогексан и его гомологи полностью превращаются в ароматические углеводороды. Это различие он предложил использовать для исследования нефтяных углеводородов. [c.82]

    Дегидрогенизация нафтенов, относяш,ихся к производным циклогексана и полицикл ическим углеводородам с шестичленными циклами, является очень важной реакцией термического крекинга. Как было указано выше, полициклические углеводороды с шестичленными циклами легко дегидрогенизуются в соответствующие нолицикличе-ские ароматические углеводороды. Моноциклические углеводороды ряда циклогексана дегидрогенизуются значительно труднее, вероятно, только в последних фазах крекинга. Ароматические углеводороды крекикг-бензина и других фракций крекинга образуются в различных фазах процесса, главным образом в результате дегидрогенизации нафтенов, присутствующих в исходном сырье. Образование ароматики из олефинов или олефинов и диолефинов в значительной степени происходит только при высоких температурах, например при крекинге в паровой фазе и других процессах, протекающих при вь соких температурах. Однако даже при крекинге в паровой фазе большая часть ароматических углеводородов получается в результате дегидрогенизации [c.70]

    Реакции риформинга углеводородов включают не только ряд таких реакций, как разрыв углеродной цепи и скелетная перегруппировка, обусловленных образованием карбониевых ионов, но также дегидрогенизацию и замыкание кольца, приводящие к образованию ароматических углеводородов. Смесь паров углеводорода с водородом пропускают при высоких давлениях и температурах над катализаторами риформинга. В качестве типичного примера можно привести результаты пропускания смеси н-гептан —водород в молярном соотношении 1 5,3 при 15 ат и температуре 500° над катализатором (платина на окиси алюминия). При этом были получены следующие фракции (мол. %) гидрокреки-рованного продукта 54,4 изомеризованного —14,2 де-гидроциклизованного 26,8 неизмененного вещества 4,6. Хотя платина, отложенная на у-окиси алюминия или полученная восстановлением платинового цеолита, приготовленного катионным обменом из кальциевого цеолита, относится к числу активных катализаторов, их относительная активность и при ароматизации, и при крекинге, и при изомеризации очень сильно зависит от метода приготовления. Это можно объяснить главным образом различной степенью дисперсности платины. Обычно считается, что по методу катионного обмена получают атомарнодисперсную платину, однако известно, что при тех температурах, при которых платина активна, легко может происходить ее миграция и спекание. Поверхность платины в подобных катализаторах определяют адсорбционными методами с использованием водорода, окиси углерода или бензола в качестве адсорбатов. Найдено, что скорость изменения поверх-8  [c.227]


Смотреть страницы где упоминается термин Дегидрогенизация углеводородов различных рядов: [c.241]    [c.259]    [c.225]    [c.283]    [c.414]    [c.210]    [c.110]    [c.183]    [c.173]    [c.183]   
Смотреть главы в:

Химия нефти -> Дегидрогенизация углеводородов различных рядов

Собрание трудов Том 3 -> Дегидрогенизация углеводородов различных рядов




ПОИСК





Смотрите так же термины и статьи:

Дегидрогенизация

Дегидрогенизация углеводородов

Углеводороды ряда



© 2025 chem21.info Реклама на сайте