Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Парафиновые углеводороды циклизация

    Логарифмы констант п константы реакции циклизации парафиновых углеводородов 3] [c.333]

    Следовательно, в условиях гидроформинг-процесса реакции ароматизации (циклизации парафиновых углеводородов) должны протекать практически до конца, если давление не выше 20 ат и температура не ниже 430° С. [c.336]

    Парафиновые углеводороды под действием высокой температуры и катализаторов способны к реакции циклизации с последующим дегидрированием до ароматических углеводородов. Ароматические углеводороды могут также получаться непосредственно дегидрированием нафтеновых. [c.14]


    Б. А. Казанский и А. Ф. Платэ [99], продолжая свои исследования над циклизацией парафиновых углеводородов в присутствии платинированного угля, изучали парафины с 6, 7, 8 и 9 атомами углерода в молекуле. Целью работы явилось выяснение влияния длины и разветвленности углеводородной цепи на скорость образования ароматических углеводородов. [c.288]

    Результаты гидрокрекинга нормальных непредельных углеводородов были очень близки к данным, полученным при гидрокрекинге соответствующих нормальных парафиновых углеводородов [31]. Продукты гидрокрекинга представляли собой насыщенные углеводороды, так как скорость присоединения водорода по месту двойной связи весьма велика. Образования ароматических углеводородов при гидрокрекинге непредельных и парафиновых углеводородов в исследованиях [30] и [31] не наблюдалось. Это связано с подавлением реакции конденсации и циклизации, обусловленным повыщенным давлением водорода и присутствием гидрирующего катализатора. [c.43]

    Температурный режим, давление и применяемый катализатор оказывают большое влияние на направление протекающих реакций, С повышением температуры усиливаются реакции расщепления цепей и колец углеводородных молекул. Снижение давления способствует разрыву связей углерод — водород, т. е. образованию олефинов из парафиновых углеводородов и циклизации олефинов в ароматические углеводороды, а также дегидрированию шестичленных нафтенов в ароматические. [c.268]

    На платиновых катализаторах одновременно с дегидроциклизацией парафиновых углеводородов в ароматические протекает реакция циклизации парафиновых углеводородов в пятичленные нафтеновые углеводороды. В присутствии платинированного угля при 310 X 2,2,4- и 1,1,3-триметилпентаны образуют до 20—30 вес. % пентаметиленовых углеводородов [9, 10]. [c.19]

    Одним из лучших критериев интенсивности побочных реакций является соотношение выходов бензина и кокса. Высокое соотношение указывает на преобладание желательных реакций, разумеется, при условии, что октановое число бензина велико. Низкое соотношение выводов бензина и кокса указывает на интенсивное протекание нежелательных побочных реакций. К желательным реакциям относятся изомеризация, гидрирование, циклизация и ароматизация (неглубокая) олефиновых углеводородов эти реакции ведут к высокому выходу парафиновых углеводородов изостроения и ароматических углеводородов, выкипающих в преде- [c.51]

    При каталитическом риформинге протекают также реакции дегидрирования парафиновых углеводородов до олефиновых, но это мало повышает октановое число риформинг-бензина и снижает его стабильность при хранении. При температурах, необходимых для протекания дегидрирования парафинов, одновременно идет и циклизация этих углеводородов. Поэтому при дегидрировании часть их вначале образует нафтеновые углеводороды, которые потом превращаются в ароматические  [c.131]


    В противоположность парафиновым углеводородам первичные реакции крекинга олефинов характеризуются значительно большим разнообразием. В первую очередь следует отметить реакции полимеризации и разложения. Кроме того, весьма вероятны различные реакции циклизации. Поэтому химизм крекинга олефинов представляет значительно более сложную картину, чем химизм первичных реакций крекипга парафинов. [c.113]

    Обычно одним из лучших критериев интенсивности побочных реакций является отношение выходов бензина и кокса. Высокое отношение указывает на преобладание желательных реакций. Низкое отношение выходов бензина и кокса указывает на интенсивное протекание нежелательных побочных реакций. К желательным реакциям относятся изомеризация, гидрирование, циклизация и ароматизация (неглубокая) олефинов эти реакции ведут к высокому выходу парафиновых углеводородов изостроения и ароматических углеводородов, выкипающих в пределах температур кипения бензина, и высокому отношению изо- и нормальных парафиновых углеводородов. Нежелательные реакции (крекинг, дегидрогенизация и полимеризация олефинов, алкилирование и конденсация арома- [c.94]

    В известных работах акад. Б. А. Казанского показана возможность проведения циклизации парафиновых углеводородов с образованием пятичленных нафтеновых углеводородов [129]. Много исследований было проведено на катализаторе платина на угле или асбесте с высоким (порядка 15—20% вес.) содержанием платины. Однако последующие исследования 1948—1950 гг. показали, что содержание платины может быть значительно снижено [130]. [c.97]

    Циклизация высококипящих парафиновых углеводородов протекает интенсивнее, чем низкокипящих. [c.214]

    Вторичные реакции, протекающие при пиролизе, весьма многочисленны изомеризация парафиновых цепей, нафтеновых циклов и алкильных фупп алкилароматических углеводородов циклизация и дегидроциклизация олефинов с шестью и более атомами углерода циклизация диенов полимеризация олефинов и диенов конденсация ароматических углеводородов. В результате всех этих реакций образу- [c.351]

    Перспективным является также направленное изменение отдельных групп веществ, например углеводородной части низко-и среднетемпературных дегтей, с тем, чтобы получить продукты с меньшим количеством классов и обогащенными отдельными соединениями [26], что позволило бы их лучше использовать для нужд химической промышленности. Теоретической базой для этого служат разработанные в органической химии методы превращений парафиновых углеводородов в ароматические, дегидрогенизации парафинов в олефины, циклизации олефинов в ароматические углеводороды, гидрирования олефинов в соответствующие парафины, дегидрогенизации циклогексанов в ароматические и другие соединения. [c.25]

    В случае частичной циклизации парафиновых углеводородов содержание ароматических углеводородов в каталнза-те будет несколько больше, чем это соответствует содержанию во фракции гидроароматических углеводородов. Однако, если для дегидрогенизации гидроароматических углеводородов достаточно однократное проведение их над катализато- [c.61]

    Ю. К. Юрьев и П. И. Журавлев [5] на искусственных смесях показали, что количество образовавшихся ароматических углеводородов соответствует количеству гидроароматических углеводородов, находящихся в искусственной смеси. Каталитическая циклизация парафиновых углеводородов по методу Б. А. Казанского и А. Ф. Платэ [4] требует особых условий (ат.мосфера инертного газа, многократное пропускание чистого углеводорода) и, несмотря на это, н-октан удается циклизировать только на 12%, в то время как дегидрирование гексагидроароматическнх углеводородов идет количественно при однократном проведении. [c.131]

    Дегидрирование до олефинов. Наряду с реакциями изомеризации большое внимание уделялось изучению дегидрирования низкомолекулярных парафинов. В ранних работах по каталитическому дегидрированию газообразных парафиновых углеводородов Гроссе и Ипатьев [14] указывали на то, что разрыв связи С—С энергетически более выгоден, чем разрыв связи С-Н. Кроме этого, процесс осложняется тем, что для достижения равновесия требуются высокие температуры (500—750° С). С увеличением молокуляр11ого веса углеводородов возрастает роль реакций циклизации. [c.166]

    Реакция дегидроциклизацпи не ограничивается парафиновыми углеводородами, имеющими неразветвленную цепь по меньшой море из 6 атомов углерода. Так, образование ароматических углеводородов главным образом, на/)а-ксилола наблюдалось нри превращении 2,2,4-тримотил-пентана [25, 39]. Изучение продуктов циклизации различных чистых парафинов привело к созданию изложенной ниже теории механизма циклизации. [c.169]

    Н. И. Молдавского и его сотрудников [3] по ароматимирующей циклизации парафиновых углеводородов в присутствии катализаторов типа оксида хрома и другие работы (4, 5]. [c.40]

    Приведем более сложный пример — платформинг бензиновых фракций. Изучение этого процесса показывает, что возможно протекание следующих обратимых реакций изомеризации нормальных парафиновых углеводородов (П) в изопарафиновые (иП) и шесгичленных нафтеновых (Не) в пятичленные (Нз), циклизации нормальных и изопарафиновых углеводородов в пяти- и шестичленные нафтеновые с выделением 1 моль водорода, дегидрирования пяти-и шестичленных нафтеновых в ароматические (А) с выделениб1М 3 моль водорода, так что уравнения протекающих реакций следующие  [c.100]


    Соотношение между реакциями крекинга и изомеризации вы-сокоюипящих парафиновых углеводородов в значительной мере зависит от типа применяемого катализатора. Применяя катализатор с высокой изомеризующей способностью, можно, как показано выще, получать преимущественно продукты изомеризации при подчиненном образовании продуктов расщепления. Такой подход лежит в основе процесса пидроизомеризации различного парафинсодержащего сырья [3—12]. Кроме того, используя селективный катализатор, избирательно расщепляющий нормальные и мало-разветвленные парафиновые углеводороды, можно удалять такие компоненты сырья в виде легких фракций при практическом отсутствии реакции изомеризации. На этом основан процесс каталитической депарафинизации нефтяного сырья [13]. Наряду с реакциями изомеризации и крекинга возможно дегидрирование части парафинов с последующей циклизацией образующихся непредельных углеводородов (реакция дегидроциклизации). Часть полученных таким образом нафтеновых углеводородов может, в свою очередь, подвергаться дегидрированию с образованием ароматических углеводородов. Указанные продукты реакций дегидроциклизации и дегидрирования обнаружены в тяжелой фракции гидроизомеризата технического парафина [6]. [c.302]

    Известно, что при риформинге на АПК парафиновые углеводороды подвергаются на платиновых центрах дегидрированию, а затем шести-или пятичленной циклизации. За счет дальнейшего дегидрирования шестичленных циклических получаем основную массу алкилароматических углеводородов, обладающих низкой коксогенностью и поэтому рассматриваемых как целевой продукт реакции. Пятичленные цикланы, образующиеся на сильных мелких кластерах платины или содержащиеся в исходном бензине, согласно нашим работам, вовлекаются в реакции дегидрирования до алкилциклопентадиенов и далее в реакции конденсации по механизму диенового синтеза Дильса и Альдера, протекающему вначале в жидком адсорбированном слое по схеме [c.145]

    Каталитические и термические процессы переработки нефтепродуктов сопровождаются выделением значительных количеств углеводородных газов, которые поступают на переработку (на схеме не показано). В процессе каталитического риформинга в результате реакций дегидро1енизации нафтенов и циклизации парафиновых углеводородов выделяется водород, который передается на установку гидроочистки. [c.56]

    Б, А, Казанский и А. Ф. Платэ установили, что ароматизация парафиновых углеводородов протекает над катализатором Pt/ прп 305—310% Одиако выходы ароматических углеводородов были значительно ниже, чем в опытах Молдавского. Например, в случае дегндроциклизации гексана выход бензола составил всего около 2%. В отличие от окиси хрома платиновый катализатор осуществлял также Сг,-циклизацию. Так, ири дегидроциклизации гептана в ка-тализате содержалось около 10% гомологов циклопептана. Таким образом, в присутствии платины циклизация парафинов протекает по двум направлениям. Напрпмер  [c.154]

    Второй важнейшей реакцией ар(жатизации является дегидроциклизация парафиновых углеводородов. В 1936 г. В. И. Каржевым с сотр. было показано, что гТри облагораживании низкооктановых бензинов в присутствии окиси хрома и некоторых других катализаторов при 500—550° С парафиновые углеводороды способны превращаться в ароматические. Почти в то же время и также на хромовом катализаторе Б. Л. Молдавский и Г. Д. Каму-шер показали на индивидуальных углеводородах, что имеется прямая связь между исходным парафиновым и образующимся из него ароматическим углеводородом, а также что олефины цикли-зуются легче, чем парафины, и являются, очевидно, промежуточной ступенью при циклизации пара((зинов. [c.214]

    Превращение парафинового углеводорода (П) в олефиновый (О) обратимо и лимитируется равновесием. Превращение олефи-нового углеводорода в ароматический (А) сильно смещено в сторону образования ароматики и лимитируется способностью олефинов к циклизации. В случае н-октана, у которого вариантов циклизации больше, чем у н-гексана, наблюдается не только повышенная склонность к дегидроциклизации, но и несколько большая общая конверсия. Благодаря склонности алюмохроМ Окалневого катализатора, специально приготовленного на предприятии Лейне (ГДР) для процесса дегидроциклизации [93], при тех же условиях (500 °С, 2 ч ) суммарная конверсия н-гексана, н-октана и н-ундекана увеличилась соответственно до 35,8 48,7 и 44,8%. Следовательно, не только природа углеводородов, но и природа катализатора влияет на кинетику второй стадии процесса, приводя к ускорению его в целом. [c.136]

    Жидкие парафиновые углеводороды нормального строения обладают весьма низкими октановыми числами и являются с этой точки зрения неудовлетворительными компонентами авто- или авиагорючего. Повышение октановых чисел нормальных парафиновых углеводородов может быть осуществлено, помимо изомеризации, разбираемой в другом месте, путем циклизации их и превращения в ароматические углеводороды, обладающих весьма высокими октановыми числами. Некоторые ароматические углеводороды являются также важным исходным сырьем для целого ряда химических производств. Поэтому превращение доступных и дешевых парафинов в ароматические углеводороды является задачей, имеющей большое промышленное значение. Аналогичное значение имеет и превращение в ароматику нафтеновых углеводородов. [c.239]

    Каталитическая циклизация парафин о в. Еще совсем недавно возможность превращения парафиновых углеводородов в ароматические казалась невероятной. Так, в 1935 г. один из крупнейших исследо вателей в области химии нефтя писал ...Циклизация длинных цепей непосредственно в бензол или его гидрированные аналоги в насто-ящее -время не имеет никаких сторонников...  [c.124]

    Секстетная модель адсорбции и реакции позволяет уточнить механизм таких процессов, как перераспределение водорода в цикло-гексене и расщепление цикла, циклизацию парафиновых углеводородов и гидрогенолиз производных циклопеитана. [c.75]

    Второй важнейшей реакцией ароматизации является дегидроциклизация парафинов. При облагораживании низкооктановых бензинов в присутствии оксида хрома и некоторых других катализаторов при 500—550 °С парафиновые углеводороды превращаются в ароматические (В. И. Каржев). Было установлено (Б. Л. Молдавский и Г. Д. Камушер), что имеется прямая связь между исходным парафином и образующимся ароматическим углеводородом, а также что олефины циклизуются легче, чем парафины, и являются, очевидно, промежуточной ступенью при циклизации парафинов. Дегидроциклизация протекает гладко при 300—310 °С в присутствии платинированного угля (Б. А. Казанский, А. Ф. Платэ). Так, -октан образует о-ксилол и этилбензол [c.186]

    Большой объем работ был посвящен изучению превращения парафиновых углеводородов в ароматические. Эта реакщ я имеет исключительно важное значение с точки зрёния соотношения выхода и октанового числа, особенно вследствие того, что она открывает возможность удаления весьма Н 13кооктано-вых парафиновых углеводородов и превращения их в углеводороды, октановые числа которых превышают 100. Теоретически объемный выход продукта изменяется от 68% при превращении н-гексана в бензол до 75—76% при превращении октанов в смеСь ксилолов с этилбензолом. Так как при реакции дегидро-циклизации парафиновый углеводород теряет только 4 моля водорода, большая часть снижения объемного выхода вызывается изменением плотности при превращении парафиновых углеводородов в ароматические. [c.206]

    Этот вопрос был дополнительно изучен в последующих работах [271, которые показали, что выход и строение образующихся ароматических углеводородов зависят от строения исходного парафинового углеводорода. Согласно первоначальным тебриям механизма циклизации предполагалось, что образование олефина с концевой двойной связью, соединенного с поверхностью катализатора по мёсту двойной связи, сопровождается замыканием кольца и последующим дегидрированием, ведущим к ароматическому углеводороду. На протяженнп всей последовательной цепи реакций промежуточные соединения остаются связанными с поверхностью катализатора. Это иллюстрируется схемой, предложенной Туиггом 137]  [c.208]

    Вторичные реакции, протекающие при пиролизе, весьма многочисленны изомеризация парафиновых цепей, нафтеновых циклов и алкильных групп алкилароматических углеводородов циклизация и дегидроциклизация олефинов с шестью и более атомами углерода циклизация диенов полимеризация олефинов и диенов конденсация ароматических углеводородов. В результате всех этих реакций образуются многочисленные ценные вещества, входящие в состав пиролизной смолы. Вторичные реакции в противоположность реакциям расщепления идут с вьшелением тепла и уменьшением объема, поэтому их протеканию благоприятствуют повышение давления и сравнительно невысокие температуры. Кроме указанных продуктов при пиролизе образуются продукты уплотнения - кокс. Для снижения коксобразования пиролиз проводят с добавлением водяного пара. [c.389]

    Переработку нефтяных фракций в ароматические углеводороды можно осуществлять при помощи крекинга (450—650 С), пиролиза (650—800 "С), каталитической дегидрогенизации нафтеиов и циклизации парафиновых углеводородов. [c.35]

    Существенное влияние на процессы крекинга и гидрирования парафинов оказывают катализаторы. Особенно сильным расщепляющим действием обладают вольфрамовые и молибденовые катализаторы, а катализаторы, полученные на основе оксида хрома, хроммедьфосфорные и платинированный уголь направляют реакции распада в сторону образования ароматических углеводородов и циклопарафинов. Этот весьма важный процесс дегиДроциклизации (циклизация с одновременным дегидрированием) был впервые открыт советскими учеными Б. Л. Молдавским, Б. А. Казанским, А. Ф. Платэ и В. И. Кар-жевым в 1936 г. При дегидроциклизации образуется одна новая связь С—С и не изменяется число атомов в углеродной цепи. В простейшем случае ароматический цикл может быть образован на основе парафинового углеводорода, содержащего в цепи [c.165]

    В основе процесса ароматизации бензинов лежат реакции дегидрирования цикланов, впервые открытые и исследованные академиком Н. Д. Зелинским и его учениками, и реакции циклизации парафиновых углеводородов, открытые Б. Л. Молдавским с соавторами и почти одновременио и независимо от них В. И. Каржевым с соавторами. [c.290]

    В работе представлены данные по гидрированию ароматических углеводородов нефтяных дистиллатов, получаемых из восточноукраинских нефтей, на палладий-алю-мосиликатном и палладий-рениевом катализаторах. Определены оптимальные условия преимущественного превращения ароматических углеводородов в соответствующие нафтеновые структуры (палладий-рениевый катализатор, давление 20 ат, температура 250—275° С, объемная скорость подачи сырья 1,0—1,5 ч->). Установлено, что на палладий-рениевом катализаторе при низких температурах и давлениях кроме гидрирования ароматических углеводородов наблюдается циклизация парафиновых углеводородов в нефтеновые. Библиогр. 4, рис. 2, табл. 1. [c.183]


Библиография для Парафиновые углеводороды циклизация: [c.287]   
Смотреть страницы где упоминается термин Парафиновые углеводороды циклизация: [c.62]    [c.170]    [c.323]    [c.54]    [c.303]    [c.143]    [c.154]    [c.17]    [c.206]    [c.69]    [c.213]    [c.156]   
Подготовка сырья для нефтехимии (1966) -- [ c.187 , c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Исследование катализатора палладия в реакции каталитической циклизации парафинов и в реакции расщепления пентаметиленовых углеводородов (совместно с X. И. Арешидзе)

Каталитическая циклизация парафиновых углеводородов на платинированном угле (совместно с А. Ф. Платэ)

Парафиновые углеводороды

Циклизация парафиновых углеводородов с четвертичным атомом углерода и механизм ароматизации парафинов на платинированном угле (совместно с Либерманом и М. И. Батуевым)



© 2025 chem21.info Реклама на сайте