Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Орбитали. Природа химической связи. Типы связей

    Основные положения теории химического строения органических соединений А, - М. Бутлерова. Квантовомеханические представления в химии. Гибридизация атомных орбиталей. Природа и виды химической связи в органических молекулах. Ковалентная связь и ее особенности. Направленность в пространстве. Семиполярная связь. Типы органических реакций. Понятие механизма химических реакций. [c.169]


    Донорно-акцепторный механизм взаимодействия. Комплексные соединения в растворах электролитов. Координационный тип химической связи. Теория кристаллического поля. Влияние природы лигандов на расщепление энергетических уровней d-орбиталей центрального атома-комплексообразователя. [c.264]

    Мы рассмотрели метод молекулярных орбиталей сначала для Нг, затем для На и перешли к более сложным примерам типа СНд и СОг. Чем дальше мы углублялись, тем чаще прибегали к слову приближенный . При дальнейшем исследовании природы связи молекулы становятся настолько сложными, что приближенными становятся уже все наши соображения, вынуждающие нас все больше преклоняться перед эмпирическими фактами. Тем не менее при эволюции представлений о природе химической связи идеи квантовой механики позволяют все же объединить и сделать последовательными большую часть аспектов проблемы химической связи. Химики раньше составляли каталоги, включающие десяток типов связи , [c.132]

    Решительные сдвиги в изучении природы бертоллидов появились только в связи с электронной интерпретацией кристаллофизических и кристаллохимических проблем на основе квантовой теории. Оказалось, что прежний дальтоновский тезис, согласно которому атомная дискретность химических соединений обусловливает также и дискретность химических отношений в этих соединениях, т. е. всеобщую эквивалентность сил химической связи, не может быть обоснован квантовой химией. Было показано, что физическая сущность химического взаимодействия, а следовательно, и химической связи в молекулах сводится к проявлению волновых свойств электронов. А это означает, что о всеобщей эквивалентности попарных химических связей не может быть и речи. Более того, речь может идти лишь о многоцентровых связях и молекулярных электронных орбиталях, которые и обусловливают как непрерывность химических отношений, так и переменный состав химических соединений бертоллидного типа. [c.69]

    Представления о природе ковалентных связей с учетом типа орбиталей,-участвующих в образовании химической связи, позволяют делать некоторые суждения о форме молекул. [c.81]

    Химические свойства органических соединений обусловлены типом химических связей, природой связываемых атомов и их взаимным влиянием в молекуле. Эти факторы в свою очередь определяются электронным строением атомов и взаимодействием их атомных орбиталей. [c.29]

    Пространственное строение молекул. Представления о природе ковалентных связей с учетом типа орбиталей, участвующих в образовании химической связи, позволяют делать некоторые суждения о форме молекул. [c.54]


    В трех приведенных выше типах кристаллов связь рассматривалась на основе взаимодействия атом—атом. С тех же позиций обычно объясняют и возможность существования в природе твердых тел. Однако такой подход не правомочен при рассмотрении металлических кристаллов. Современная теория химической связи в металлах использует одноэлектронное приближение и в этом отношении она до некоторой степени аналогична теории молекулярных орбиталей для молекул. Сходство этих теорий еще и в том, что они сломали классические представления об индивидуальности атомов. [c.278]

    Использование методов УФЭС и РФЭС в основном определяется природой орбиталей атомов на поверхности и молекулярных орбиталей хемоадсорбированных молекул [45—47]. Например, для двухатомных гетероядерных молекул может быть изучена характеристическая фотоэмиссия от каждого из атомов в адсорбированной молекуле [37]. Линии кислорода используются для идентификации двух типов радикалов оксида углерода, адсорбированного на вольфраме (а- и 3-формы). Химические сдвиги кислорода (1 ) были использованы при применении метода РФЭС для того, чтобы проследить за десорбцией а-СО из монослоя оксида углерода. Подобная работа, выполненная в Национальном Бюро стандартов [37, 46] с, N2, N0, О2, Н2СО и СО, показала, что 15-энергии связей адсорбированных атомов уменьшаются, так как адсорбционные силы возрастают в качественном соответствии с физическими моделями [48]. [c.159]

    Характеристики химической.связи (Ес, г о., и ее природа определяются типом перекрывающихся орбиталей атомов. [c.170]

    При неполной нейтрализации плавиковой кислоты щелочью образуются кислые бифторид-ионы HF , в которых энергия связи молекулы НР с ионом Р" составляет 160 кДж/моль р—НР". Высокая энергия связи говорит о ее химической природе. В этом случае электронные пары как атома, так и иона фтора (доноров) участвуют в заполнении вакантных орбиталей молекулы НР в равной степени. Об этом говорит то, что оба атома фтора расположены на одинаковом расстоянии (1,13 A) от атома водорода, превышающем длину связи Н—р в изолированной молекуле на 0,21 A. В полученном анионе (НРз)" отрицательный заряд не локализуется на каком-либо одном из атомов фтора. Связи подобного типа иногда называют трехцентровыми, объясняя их образование комбинированием ls-орбитали атома водорода с двумя гибридными орбиталями связываемых им атомов фтора. [c.114]

    Перейдем теперь к более глубокому рассмотрению природы химической связи в координационных комплексах, основанному на представлениях теории поля лигандов, которая позволяет объяснить окраску, магнитные свойства и другие особенности поведения этих соединений. Обсудим влияние электрического поля, создаваемого несколькими заряженными лигандами, на валентные электроны центрального иона. Отрицательно заряженные лиганды отталкивают электроны центрального иона, причем максимальное влияние они оказывают на самые внешние электроны. В частности, наиболее сильное воздействие со стороны лигандов испытывает диффузное облако валентных -электронов центрального иона, т. е. электронов, находящихся на самом внешнем /-подуровне. У свободного (или, как говорят, изолированного) иона все пять d-op6ma-лей имеют одинаковую энергию. Если на й(-под-уровне находится один электрон, он может занимать любую из пяти /-орбиталей с равной вероятностью. Представим себе теперь, что мы приближаем к катиону шесть одинаковых лигандов, образующих вместе с ним октаэдрический комплекс типа А1Рб . Из рис. 23.10 видно, что при этом /,2- и с1 2 , ,2-орбитали центрального иона окажутся сконцентрированными вдоль координатных осей, в направлении к приближающимся лигандам, тогда как с1 - и ,,-орбитали концентрируются в областях между координатными осями. Если на /-уровне центрального иона имеется один электрон, он будет предпочтительно располагаться на с1 -, - или / -орбиталях, избегая отталкивания электрическим полем лигандов. Другими словами, энергетический -подуровень расщепляется на два новых подуровня, одному из которых отвечают три орбитали, а другому — [c.414]

    Наиболее полное понимание природы химической связи оказалось возможным, однако, лишь после создания квантовой механики (работы Н. Бора, Л. де Бройля, Э. Шрёдингера и других). Согласно квантово-меха-ническим представлениям, электроны в атомах находятся на атомных орбиталях. Атомная орбиталь (АО) - понятие, принятое для обозначения наиболее вероятной области нахождения электронов в атоме. В физическом понимании каждая АО представляет собой волновую функцию. Она описывается собственным набором квантовых чисел и для атома водорода может быть выражена математической функцией. Атом каждого элемента обладает орбиталями лишь определенного типа и числа. [c.44]

    КОВАЛЕНТНАЯ СВЯЗЬ, центральное понятие теории хим. связи, сформировавшееся еще в рамках теории валентности. К. с. образуют атомы (или группы атомов), на валентных ор-бнта. 1ях к-рых имеются неспаренные электроны. Обобществление последних ведет к формированию общей для связывающихся атомов электронной пары. В зависимости от числа возникающих т. о. электронных пар различают простые связи (одна электронная пара) и кратные связи. Природа К. с. раскрывается полностью лишь при квантовомех. рассмотрении (см. Химическая связь), к-рое выявляет общность сил, ответственных за возникновение как К. с., так и др. типов хим. связи. При образовании К. с. из одинаковых атомов или групп распределение электронной плотности в орбиталях связывающих электронных пар строго симметрично по отношению к обоим атомным центрам (неполярные связи). Если К. с. образованы атомами с разл. электроогри-цател ностью, то электронное облако связи смещено в сторону более электроотрицат. атома (полярные связи). [c.264]


    В настоящем обзоре излагаются физические основы фото-, рентгеноэлектронной и рентгеновской спектроскопии, необходимые для понимания различных аспектов применения методов к изучению валентных электронных уровней. Рассмотрены вопрос о сравнении экспериментальных данных с расчетами и степень достоверности различных методов расчета. Приведены энергии ионизации и другие характеристики уровней для более чем двухсот свободных молекул и изолированных групп в кристаллах. Опубликованный к настоящему времени материал в этой области столь велик, что заведомо исключает охват всех исследованных соединений. В рамках настоящего обзора рассмотрены данные для простых и комплексных неорганических соединений и примыкающих к ним простых органических и элементоорганических молекул. В обзор включены также данные по зонной структуре нескольких десятков соединений типаЛ"5 (п=1,2,3,4), а также окислов переходных и непереходных металлов. Совместное рассмотрение свободных молекул и твердых тел диктуется не только совпадением применяемых физических методов, но и единством самой природы химической связи, что выражается в наличии общих закономерностей. В последней главе обзора рассмотрены степень участия различных атомных орбиталей в образовании химической связи, взаимосвязь атомных и молекулярных орбитальных энергий, изменения электронного строения в ряду изо-электронных и изовалентных соединений. [c.6]

    Рассмотрим природу связей в молекуле ацетилена в соответствии с электронной теорией. При образовании химических связей в молекуле ацетилена гибридизации подвергаются только две орбитали внешнего энергетиче ского уровня атома углерода одна 5- и одна р-орбиталь Этот тип гибридизации называется хр-гибридизацией Две р-орбитали углеродного атома остаются в неизмен ном виде. Расположение двух гибридных орбиталей ато ма углерода в пространстве показано на рис. 20.4 он1 направлены вдоль одной оси под углом 180° друг к другу [c.328]

    Эволюция локализованных возбуждений. Дальнейшая судьба образовавшихся радикалов и экситонов также во многом определяется исходной геометрией аниона, симметрией местоположения, степенью орбитального вырождения, природой центрального атома аниона. Если орбиталь, занимаемая неспаренным электроном, вырождена, то эффект Яна-Теллера приводит к искажению ядерной конфигурации вплоть до диссоциации. Устойчивость к диссоциации определяется химической природой радикала. Для координационно-насыщенных соединений наблюдается разрыв связи, а для ненасыщенных - нет. При локализации экситона наблюдаются аналогичные вибронные эффекты. Энергия возбуждений анионов заведомо превышает энергию разрыва любой из химических связей внутри многоатомного аниона. Прямая диссоциация синглетных возбуждений кислородсодержащих анионов с образованием атомарного или молекулярного кислорода запрещена правилом сохранения мультиплетности, в связи с чем она протекает через образование комплексов с переносом заряда типа [ХОп-т От]. Экспериментально такие комгшексы обнаружены в нитратах, хлоратах и перхлоратах. Первоначально при диссоциации происходит селективный разрыв наиболее длинной связи (даже при разности длин связей менее 1%), что экспериментально подтверждено для нитратов щелочных металлов, хлората калия, перхлората бария. [c.98]

    СКИХ уровней, энергии которых могут быть определены при детальном анализе атомных спектров. Отсюда следует, что в волновой модели атома должны быть квантованные энергетические уровни, точно так же как в атомных моделях, построенных по экспериментальным данным. В волновой механике квантованное энергетическое состояние называют собственным значением. Итак, для каждой собственной функции существует соответствующее собственное значение. Интерпретация этого термина довольно сложна. Она основана на аналогии со светом (имеющим также волновую природу), интенсивность которого в данной точке пропорциональна квадрату амплитуды световой волны в этой точке. Аналогично интенсивность электронной волны пропорциональна г з . Однако эта идея сама по себе дает довольно мало информации, и поэтому приходится прибегать к одному из двух следующих способов ее интерпретации. Согласно первому из них, предполагается, что электрон движется вокруг ядра по пути, который не обязательно имеет сферическую симметрию. В этом случае 1)3 представляет собой величину, характеризующую зависящее от времени распределение отрицательного заряда вокруг ядра. Эту динамическую модель электрона довольно трудно себе представить, и она может быть заменена на эквивалентную статическую модель электрона в виде облака отрицательного заряда, распределенного (не обязательно сферически) вокруг ядра, причем плотность заряда в любой элементарной ячейке пространства dxdydz) будет пропорциональна йх йу йг). Эквивалентность этих двух моделей становится очевидной, если представить себе, что ноло-/кения движущегося электрона будут отмечаться точками в пространстве в течение значительного промежутка времени. Плотность точек на этом графике будет выглядеть как облако статического заряда. Согласно второй интерпретации 113 (использование которой более оправдано именно в этой интерпретации, поскольку в ней не принимается, что электрон размазан в пространстве), электрон рассматривается как частица и вероятность его наблюдения в любой точке в канадый момент пропорциональна величине я)) для этой точки. Обе интерпретации полезны. В последней отражен принцип неопределенности Гейзенберга, согласно которому невозможно точно описать и местонахождение электрона в атоме и его энергию (или момент) в одно и то же время. Так, если точно известна энергия уровня, на котором находится электрон, то нельзя проследить его точную орбиту (подобную предложенной Бором). Вместо этого для данного энергетического уровня существует атомная орбиталь несколько размытой формы, определяемой значением вероятности для всех ее точек. Такая орбиталь, обычно обозначаемая как АО, принимает определенную форму, лишь если пренебречь теми ее областями, где вероятность нахождения электрона очень мала. С другой стороны, интерпретация по типу модели облака заряда является несравненно более полезной при наглядном изобрал<ении химической связи. [c.33]

    Химиков-оргаииков давно привлекала идея выработки числовых индексов реакционной способности (ИРС), основанных на том пли ином физико-химическом параметре реагирующего соединения. С развитием квантовой химии и прежде всего метода ЛКАО МО эта идея стала активно претворяться в жизнь. Предложено множество ИРС, основанных на расчете энергетп-ческих характеристик и электронного распределения молекул, в том числе эффективные заряды атомов, порядки связей, свободные валентности, энергии локализации, энергии граничных орбиталей, плотность электронов на граничных орбиталях, су-перделокализуемость и др. Интенсивные исследования в этом направлении проводились на протяжении 50—70-х годов, причем особое внимание было обращено на гетероароматические соединения. Последнее объясняется двумя обстоятельствами. Во-первых, гетероциклы — очень удобный объект для проверки пригодности ИРС из-за наличия в них различных типов гетероатомов с широко варьирующейся электроотрицательностью и ярко выраженным влиянием на я-электронное распределение. Во-вторых, многие азотистые гетероциклы играют важную роль в биохимии и перспектива пролить свет на ее природу с позиций квантовой химии весьма заманчива. [c.191]


Смотреть страницы где упоминается термин Орбитали. Природа химической связи. Типы связей: [c.264]    [c.136]    [c.45]    [c.338]    [c.94]    [c.83]    [c.129]   
Смотреть главы в:

Органическая химия Издание 3 -> Орбитали. Природа химической связи. Типы связей




ПОИСК





Смотрите так же термины и статьи:

Орбитали и химическая связь

РНК химическая природа

Связь природа

Химическая связь

Химическая связь связь

Химический связь Связь химическая

природа связе

типы связ



© 2025 chem21.info Реклама на сайте