Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определения железа .), кальция

    ОПРЕДЕЛЕНИЕ ЖЕЛЕЗА. КАЛЬЦИЯ, МАГНИЯ И АЛЮМИНИЯ В СУПЕРФОСФОРНОЙ КИСЛОТЕ [c.38]

    Метод АА позволяет определить микропримеси металлов. Применяют спектрофотометр Сатурн-1 , атомизатор — щелевая горелка с длиной пламени 10 см. Для определения железа, кальция, магния, меди, марганца, кобальта, кадмия, никеля, хрома, свинца используют пламя ацетилен—воздух, для определения алюминия, молибдена, ванадия — пламя диоксид азота — ацетилен (длина пламени 5 см). Источник спектрального излучения — лампа с полым катодом ЛСП-1 [14]. Оптимальные условия фотометрирования, обеспечивающие высокую чувствительность и воспроизводимость результатов, приведены в табл. 7. [c.41]


    СПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ ЖЕЛЕЗА, КАЛЬЦИЯ, МАГНИЯ ХРОМА, НИКЕЛЯ, КРЕМНИЯ И БОРА В ЦИРКОНИИ  [c.352]

    Обычно соблюдают следующий порядок. Для общего анализа отбирают особую пробу, а для определения растворенных кислорода, углекислоты и сероводорода отбирают еще три пробы, выполняя затем в них соответствующие аналитические операции. В пробе для общего анализа определяют цвет, наличие и вид осадка, запах и вкус, если это необходимо и возможно по характеру пробы. Взболтав жидкость, отливают порцию для определения взвешенных веществ, остальное количество фильтруют и из фильтрата отбирают пробы для определения жесткости, кальция, щелочности, хлоридов, нитритов, окисляемости и сухого остатка. Определение всех этих показателей, кроме сухого остатка, может быть закончено за 30—40 мин, после чего приступают к более трудоемким операциям для определения железа, алюминия, натрия, калия, сульфатов, нитратов, кремниевой кислоты и аммиака. Перечисленные примеси относительно стабильны, и их определение может выполняться во вторую очередь. [c.410]

    Назвать наиболее пригодную форму осаждения при определении а) кальция б) бария в) свинца г) железа д) магния е) меди ж) кадмия з) висмута и) цинка к) кремния л) калия м) натрия н) сульфат-иона о) фосфат-иона. [c.53]

    При анализе глин, гранитоидов и других силикатных пород с различным содержанием основных компонентов кремния, алюминия, железа, кальция и магния и содержанием натрия от 0,5 до нескольких десятков процентов установлено, что кинетика испарения натрия из пробы в дуге переменного тока 5 А, положение градуировочных графиков и точность определения не зависят от валового состава пробы [89]. Не обнаружено также взаимного влияния натрия и калия. При относительно малом содержании щелочных металлов в состав буфера вводят карбонат лития, оксид меди и угольный порошок. При определении натрия в силикатах с содержанием щелочных металлов свыше 8% применяют метод ширины спектральных линий. [c.99]

    В основном этот метод аналогичен методу определения примесей в цирконии (см. стр. 169) он дает возможность определять алюминий, ванадий, вольфрам, железо, кальций, кобальт, кремний, магний, марганец, медь, молибден, никель, ниобий, олово, титан и хром. [c.182]

    Вольфрам и молибден. Общие требования к методам химического и спектрального анализа Ниобий. Спектральный метод определения вольфрама и молибдена Ниобий. Спектральный метод определения тантала Тантал и его окись. Спектральный метод определения алюминия, ванадия, железа, кальция, кремния, магния марганца, меди, никеля, ниобия, олова, титана, хрома и циркония [c.821]


    Свинец высокой чистоты. Спектральный метод определения натрия, кальция, магния, алюминия, железа и таллия [c.582]

    Лантан, церий, европий, гадолиний, лютеций, иттрий и их окиси. Спектральный метод определения ванадия, железа, кальция, кобальта, кремния, магния, марганца, меди, никеля, свинца, титана, хрома, цинка и циркония [c.589]

    Схема определения кремневой кислоты, алюминия, общего содержания железа, кальция и магния. Эти компоненты определяют из одной навески последовательно. Определение основано на разложении силикатов соляной кислотой. При этом выделяется кремневая кислота. Если исследуемое вещество полностью разлагается кислотами, его обрабатывают соляной кислотой. Если вещество не разлагается кислотами, то его предварительно сплавляют со смесью карбонатов натрия и калия, а затем полученный плав обрабатывают соляной кислотой  [c.299]

    Относительно применения других комплексообразователей для амперометрического определения железа сведений почти нет, за исключением оксалата калия, который был предложен для совместного титрования кальция и железа. [c.205]

    Железо, кальций, магний, марганец, титан, медь, кремний, никель и цинк (до 0,5 мг) не мешают определению [c.191]

    Описан экстракционно-фотометрический метод одновременного определения алюминия и железа. Принцип метода состоит в том, что хлороформный экстракт оксихинолинатов алюминия и железа фотометрируют при 390 при 470 ммк. Метод использован для определения алюминия и железа в титане и ванадии [187]. Аналогичный вариант применен для определения алюминия и железа в магнии [188]. Экстракция оксихинолината железа и фотометрирование экстракта использованы для определения железа в крови [189]. Ванадий экстрагируют хлороформом в виде оксихинолината при pH 3,5—4,5 и полученный экстракт фотометрируют при 550 ммк [190]. Методики экстракционно-фотометрического анализа в виде оксихинолинатов разработаны для определения цинка и кадмия в присутствии больших количеств кальция [191], кальция в солях, технических продуктах и породах [192], олова в железе и стали [193], урана в присутствии тория, лантана, иттрия или самария [194] и в висмутовых сплавах [195]. Цинк и магний в форме оксихинолинатов легко экстрагируются метил-изобутил кетоном. Экстракты имеют максимумы светопоглощения [c.243]

    Анализ алюминия и его сплавов обычно сводится к определению железа, кремния, меди, магния, марганца, реже калия, натрия, цинка, кальция, никеля. Добавление указанных элементов изменяет свойства чистого алюминия. Так, марганец повышает устойчивость к коррозии, но понижает пластичность магний уменьшает массу и повышает прочность кремний увеличивает прочность, но уменьшает пластичность медь увеличивает прочность. Состав некоторых алюминиевых сплавов приведен в табл. 36. [c.377]

    Освоен и применялся рентгенофлуоресцентный метод анализа продуктов цеха —шихты, шлаков, штейнов, руды. Лаборатория, размешенная в здании цеха, была оснащена двумя рентгеновскими анализаторами ФРА-Ш и двумя рентгеновскими квантометрами ФРК-2, рентгеновским спектрометром РС-5700. Медь в шлаках и штейне определяли при помощи прибора ФРА-1М. Результат анализа можно было иметь через 3—5 мин после доставки пробы. Кремний, железо, кальций и серу определяли на квантометре ФРК-2 в этом случае продолжительность анализа одной пробы — 15 мин. Правильность анализа обеспечивалась применением стандартных образцов, химический, вещественный и гранулометрический состав которых близок к составу анализируемых проб. Относительная ошибка рентгенофлуоресцентных определений меди составляла 7% при содержаниях ее 0,05—0,15% и до 2,5% при содержаниях 8—30%. Между прочим, относительная ошибка анализа тех же проб химическими методами составляла соответственно 16 и 2%. Результаты рентгенофлуоресцентных анализов использовали для оперативного управления производством и составления балансов. [c.151]

    Для определения содержания кальция, меди, марганца и железа в натуральном каучуке использован эмиссионный анализ с предварительным озолением пробы [310, 311]. Пленку каучука сушат 1 ч при 100 °С и охлаждают в эксикаторе. Навеску [c.217]

    Прямое определение с применением реактива Несслера обычно выполняется в водах, содержащих сравнительно. ольшие (выше 0,2 мг/л) количества аммиачного азота, когда окрашенные ионы заметно не мешают й не требуется высокая точность определений. При прямом определении аммиака реактивом Несслера для осаждения взвешенных веществ и удаления окрашенных ионов, а также таких ионов, как ионы магния, железа, кальция и сульфида, к анализируемой воде добавляют сульфат цинка и затем раствор щелочи. [c.95]

    Петрографы, со своей стороны, должны добиваться того, чтобы нужные им анализы проводились насколько возможно полно, а не довольствовались бы, как это часто случается, определениями кремнекислоты, окиси алюминия, окислов железа, кальция, магния, щелочных металлов и воды. Такие сокращенные анализы, правда, имеют иногда свои основания, так как их, несомненно, можно использовать для некоторых целей. Однако при таких неполных анализах не только может остаться незамеченным многое, что представляло бы большую ценность для исследователя, но, что еще важнее, могут быть сделаны совершенно неверные заключения. Нам пришлось наблюдать достаточное число примеров таких неверных заключений, и мы имеем веские основания настаивать на большей полноте анализов горных пород и минералов, проводимых с чисто научной целью [c.877]


    Карбонаты, растворимые без нагревания, можно обрабатывать кислотой на холоду, в атмосфере двуокиси углерода, благодаря чему уменьшается опасность разложения силикатов, если таковые присутствуют. Если предпочитают титровать бихроматом калия, то в отсутствие двуокиси марганца можно для разложения пробы брать соляную кислоту. В этом случае, конечно, не происходит образования нерастворимой соли кальция, чхо упрощает последующее определение железа (II) в нерастворимом остатке породы. Моншо считать, что ббльшая часть определенного таким способом железа (II), если не все, содержалось в породе в виде карбоната. [c.1059]

    Чистоту препарата определяют по отсутствию сульфатов железа, кальция, тяжелых металлов, хлоридов, аммиачных соединений (при нагревании с раствором едкого натра не должен выделяться аммиак), мышьяка. Количественное Определение производят ацидиметрически. [c.60]

    В новом пламени — смеси этанола и воздуха — натрий можно определять сразу же после разложения силикатов смесью НР и Н2804, так как не обнаружено влияния железа, кальция и других элементов [99]. В пламени кислород—водород при определении натрия по линии 589,6 нм не наблюдалось влияние лития, магния, меди, бария, стронция, алюминия, циркония и ванадия [1207]. Влияние ванадия не наблюдали также при его содержании до [c.122]

    Важное диагностическое значение имеет определение уровня кальция при гипокалъциемии. Состояние гипокальциемии наблюдается при гипо-паратиреозе. Нарушение функции паращитовидных желез приводит к резкому снижению содержания ионизированного кальция в крови, что может сопровождаться судорожными приступами (тетания). Понижение концентрации кальция в плазме отмечают также при рахите, спру, обтурационной желтухе, нефрозах и гломерулонефритах. [c.583]

    Определение кальция в железе и ферросплавах. Определение микропримеси кальция в окиси железа особой чистоты и других соединениях железа [136] можно проводить путем фотометрирования комплекса кальция с глиоксаль-бис-(2-оксианилом) при X = 537 нм после отделения железа экстракцией ТБФ. При содержании > 40 мкг кальций определяют микротитрованием с глиок-саль-бис-(2-оксианилом) в качестве индикатора. [c.198]

    Редкоземельные металлы и их окиси. Спектральный метод определения ванадия, железа, кобальта, кремния марганца, меди, никеля, свинца, титана, хрома Лантан, церш4, европий, гадолиний, лютеций, иттрий и их окиси. Спектральный метод определения ванадия железа, кальция, кобальта, кремния, магния, марганца, меди, никеля, титана, хрома, цинка и циркония [c.822]

    Метод определения сурьмы Метод определения меди Метод определения висмута Метод определения мышьяка Метод определения цинка и меди Метод определения натрия Метод определения железа Метод огфеделенм кальция Метод определения магния Метод определения олова Метод определения теллура Методы определения серебра Методы определения никеля Спектральный метод определения [c.580]

    Методы химического анализа. Определение общей, бикарбонатиой. карбонатной и гидратной щелочности Методы химического анализа. Определение общей жесткости Методы химического анализа. Определение окисляемости маргаице-вокислым калием Методы химического анализа. Определение содержания железа Методы химического анализа. Определение содержания кальция Методы химического анализа, Опреде- тение содержания магния [c.17]

    В -настоящее время для определения сульфат-иона в сточных водах обычно пользуются весовым методом и в некоторых случаях комплексо-метрическим [3-8]. Весовое определение сульфатов, как известно, является одним из наиболее трудоемких и длительных в аналитической практике. Присутствие тиосульфата аммония в водах -может искажать результат как весового, так я комплексометрического анализа в сторону завышен-ия. Комплексометрический метод пр-имен.им только для анализа бесцветных -или слабоокрашенных сточ-ных вод. Основ-ные ограничения -метода связаны с иечетким переходом окраски -индикатора из-за наличия в водах ионов железа, кальция -и друг-их -металлов, а также ряда [c.55]

    При исследованиях с помощью радиоактивных индикаторов весьма существенна радиохимическая чистота индикатора, т. е. отсутствие в нем радиоактивных изотопов других элементов и неучтенных изотопов (главным образом короткоживущих) изучае-мого элемента. Даже ничтожные активные примеси могут совершенно исказить результаты. Так, при определении растворимости кальция в железе с применением в качестве радиоактивного индикатора кальция-45, содержащего примеси фосфора-32, были получены завышенные результаты [16]. Это объясняется тем, что фосфор лучше растворим в железе, чем кальций, и поэтому значительная доля обнаруженной активности в железе обусловле- на присутствием радиоактивного фосфора-32. [c.7]

    В ирннципе все существующие в природе элементы присутствуют во всех веществах, только в очень разных концентрациях. Восемь элементов, составляющих 98,6% массы земной коры — кислород, кремний, алюминий, железо, кальций, магний, натрий и калий — имеют наибольшие шансы присутствовать где только возможно. Следы этих элементов есть, конечно, во всех анализируемых материалах, от них особенно трудно освободиться при получении и. хранении чистых веществ. Само понятие чистого или ультра-чистого вещества поэтому пе очень определенно. Одно из определений ультрачистого вещества мы приведем под ультрачистым можно понимать вещество, свойства которого при дальнейшей очистке существенно не меняются. От такого идеала мы пока далеки он достигнут только для некоторых материалов. Напротив, мы постоянно читаем о том, что увеличение чистоты приводит к сильному изменению свойств веществ. Например, пластичность вольфрама и циркония сильно растет с чистотой этих металлов. Бериллий считали твердым и хрупким, но когда его очистили методом зонной плавки, оказалось, что это металл ковкий, тягучий, податливый. [c.103]

    Из этих вопросов последний является наиболее сложным и подробно изучен во многих работах [195]. Прямое использование водных растворов сравнения не обеспечивает одинакового абсорбционного сигнала с растворами органического происхождения, хотя иногда, например при определении железа, ванадия, никеля и меди в продуктах крекинга, и предлагают методики на их основе [196, 197]. В [198] описана методика атомно-абсорбционного определения бария, кальция, меди, железа и цинка в моторных смазочных маслах путем использования метода добавок, в котором известные количества определяемых элементов вводят в исходную пробу в виде водных растворов неорганических солей. В качестве растворов сравнения чаще применяют металлоорганические соединения, растворенные в том же растворителе, который используется для разбавления анализируемых образцов [199—201], а также металлоорганические соединения, растворенные в масле, нефти, очищенные от металлов [202—204]. Выпускаются стандартные совместные растворы Коностан , Континентал Ойл Компани (США), на основе которых выпускаются также и смешанные стандарты (Д-12, Д-20, С-20) на несколько элементов в одном растворе [205, 206]. [c.57]

    Какой бы вариант метода ни применялся, мешающие элементы — медь, железо, алюминий, титан, марганец, цинк и кальций должны быть удалены. При объемНом окончании определения можно кальций не удалять, но превращать его в оксалат кальция и, не фильтруя, проводить осаждение оксихинолята магния. Описанный ниже ход определения магния разработан для анализа цементов, не содержащих в заметных количествах элементов, которые не выпадают в осадок от аммиака меди, цинка и марганца Определение магния заканчивается объемным способом.,  [c.725]

    Тогда прямое определение двуокиси углерода совсем опускают и либо вычисляют ее содержание по общему содержанию кальция и магния, либо принимают за содержание двуокиси углерода потерю в массе при прокаливании. Нерастворимый в кислоте остаток часто принимают за кремнекислоту. При определении железа последние пересчитывают на FejOg-, на воду и углистые вещества совсем не обращают внимания, так же как и на титан, фосфор и более редкие компоненты, а серу почти всегда представляют в результатах анализа в виде SO3. [c.1043]


Смотреть страницы где упоминается термин Определения железа .), кальция: [c.372]    [c.17]    [c.152]    [c.331]    [c.217]    [c.194]    [c.127]    [c.144]    [c.102]    [c.155]    [c.441]    [c.586]   
Смотреть главы в:

Количественный микрохимический анализ  -> Определения железа .), кальция




ПОИСК





Смотрите так же термины и статьи:

Кальций определение



© 2025 chem21.info Реклама на сайте